Ohm's law is V = I·R, so:
9.0 V = 0.30 A · x ohm
x = 9/0.3 = 30 ohm
E/R=I. 100/50=2 amps.
If you have a simple circuit. For eg: One voltage source and one resistor, then the voltage of the circuit will always remain the same, the current however will decrease following Ohms' Law V=I*R. If we have a current source instead of a voltage source, we are forcing the current to be a certain value so if we increase the resistor value the current will remain the same but the voltage will increase.
The voltage itself will determine the direction of current (assuming there isn't another source pushing current through the source backwards); the amount of current will be determined by the thevenin equivalent resistance of the circuit connected to that source (the resistance "seen" by the source, which can be lumped into a single circuit element).
When resistors are connected in series in a circuit . the voltage drop across each resistor will be equal to its resistance, as V=IR, V is direct proportional to R. An A: The relationship is that the current will divide for each paths in a parallel circuit and the voltage drop across each will be the source voltage. In a series circuit the current will remain the same for each component but the voltage will divide to reflect each different component value. And the sum of all of the voltage drops will add to the voltage source
The simplest form of an electrical circuit is when an energy source (such as a battery) is connected to a load (such as a light bulb or a resistor). The connections must be made in such a way as to allow the energy to flow from the source, through the load and back into the source to form a loop.
It depends on the purpose for installing the resistor. If the intent is to decrease current flow, the resistor must be connected in series with the load. If the purpose is to increase current flow, the resistor must be connected in parallel with the load. To connect a resistor in series, connect the resistor to one side of the power source, in line with the load. This will decrease circuit current flow. To connect a resistor in parallel, connect the resistor between the positive and negative sides of the power source, which will effectively connect the resistor across the load . This will increase current flow through the circuit. However, before connecting a component in parallel, make sure the increase in current flow will not exceed the current rating of the circuit or fuses/breakers will blow.
The rule for voltage across each resistor in a series circuit is that the total voltage supplied by the source is equal to the sum of the voltage drops across each resistor. In a parallel circuit, the voltage across each resistor is the same and equal to the source voltage.
it is used to check or verify how much current pass through the circuit using voltage source.
A driven RL circuit is a circuit that contains a resistor (R) and an inductor (L) connected in series with an external source of alternating current (AC) or voltage. The external source provides energy to the circuit, driving the current through the inductor and resistor. This circuit can exhibit interesting behavior such as resonance and phase shifts due to the interplay between the inductive and resistive components.
We know definition of Resistance, that resistor always opposes to flow of current. resistor should have input signals from source , so it generates passivity in circuit
E/R=I. 100/50=2 amps.
To calculate the current running through the 60 ohm resistor in a parallel circuit, you first need to find the total resistance of the circuit. For a parallel circuit, the reciprocal of the total resistance (1/RT) is equal to the sum of the reciprocals of the individual resistances (1/R1 + 1/R2 + 1/R3). Once you find the total resistance, you can use Ohm's Law (I = V/R) to calculate the current running through the 60 ohm resistor.
To find the current through the 40 ohm resistor, first calculate the total resistance of the parallel circuit: 1/Rt = 1/120 + 1/60 + 1/40. Then, calculate the total current using Ohm's Law, I = V/Rt. Finally, use the current divider rule to find the current passing through the 40 ohm resistor.
If you have a simple circuit. For eg: One voltage source and one resistor, then the voltage of the circuit will always remain the same, the current however will decrease following Ohms' Law V=I*R. If we have a current source instead of a voltage source, we are forcing the current to be a certain value so if we increase the resistor value the current will remain the same but the voltage will increase.
If they're in parallel, then each resistor acts as if it were the only one,and the presence of any others is irrelevant.The current through the 60-ohm resistor is I = E/R = (120/60) = 2 amperes.
What happens to the current in a circuit as a capacitor charges depends on the circuit. As a capacitor charges, the voltage drop across it increases. In a typical circuit with a constant voltage source and a resistor charging the capacitor, then the current in the circuit will decrease logarithmically over time as the capacitor charges, with the end result that the current is zero, and the voltage across the capacitor is the same as the voltage source.
If they're in parallel, then the resistors have no effect on each other. The current through each one is the same as it would be if the others were not there at all. The current through the 120Ω resistor is 120 volts/120Ω = 1 Ampere. The 60Ω and the 40Ω are red herring resistors.