Transistors can operate at low voltages, but the term "low voltage" is relative and depends on the specific application and type of transistor. For instance, many modern digital circuits use low-voltage transistors designed to operate effectively at voltages below 1.8 volts, while others may function at higher voltages. Overall, transistors are versatile components that can be designed for a range of voltage levels depending on their intended use.
It depends on the transistor. Minimum base-emitter junction voltage can be as low as 0.6 volts for a silicon transistor, and as low as 0.2 volts for a germanium transistor.
A simple test to determine if a transistor is in cutoff or saturation is to measure the voltage across the collector-emitter (V_CE) terminal. If V_CE is close to the supply voltage, the transistor is likely in cutoff, indicating it is off. Conversely, if V_CE is very low (typically below 0.3V for a silicon transistor), the transistor is in saturation, meaning it is fully on and allowing maximum current to flow.
In a PMOS transistor, the source is connected to the positive supply voltage (VDD) because it allows the transistor to turn on when the gate voltage is pulled low (below the source voltage). This configuration enables the PMOS to conduct current when the gate is at a lower potential, effectively allowing it to act as a switch in digital circuits. By connecting the source to VDD, the PMOS transistor can efficiently control the flow of current to the load connected to the drain.
0.7V
The Junction Field Effect Transistor (JFET)exhibits characteristics which often make it more suited to a particular application than the bipolar transistor. Some of these applications are: - High Input Impedance Amplifier - Low-Noise Amplifier - Differential Amplifier - Constant Current Source - Analogue Switch or Gate - Voltage Controlled Resistor
It depends on the transistor. Minimum base-emitter junction voltage can be as low as 0.6 volts for a silicon transistor, and as low as 0.2 volts for a germanium transistor.
it cnverts to a low voltage.
Its is the emiiter base of the transistor voltage!
A simple test to determine if a transistor is in cutoff or saturation is to measure the voltage across the collector-emitter (V_CE) terminal. If V_CE is close to the supply voltage, the transistor is likely in cutoff, indicating it is off. Conversely, if V_CE is very low (typically below 0.3V for a silicon transistor), the transistor is in saturation, meaning it is fully on and allowing maximum current to flow.
Collector-emitter saturation voltage refers to the voltage drop across the collector-emitter junction of a transistor when the transistor is in saturation mode. It is the minimum voltage required to keep the transistor in saturation, where the transistor is fully turned on and conducting maximum current.
A: By saturating a transistor meaning forward bias the base to emitter the voltage across the collector and base should be very low . depending on current it can be .050 v to .5v reversing or removing the bias voltage this voltage should be the same as the rail
Transistor Series Voltage Regulator
Historically, transistor-transistor logic (TTL) voltage levels have been 5.0 volts, with a high being any voltage above about 3.5 volts and a low being any voltage below about 1.5 volts, with lots of variations on the high/low cutoffs from part to part. Since about 2001, however, most processors have been using low-voltage TTL (LVTTL), which has a nominal voltage of 3.3 volts (approx >2.2 volts for high and approx < 1.2 volts for low). Hence, many parts advertised as "TTL" today actually work at 3.3 volts rather than 5.0 volts.
In a PMOS transistor, the source is connected to the positive supply voltage (VDD) because it allows the transistor to turn on when the gate voltage is pulled low (below the source voltage). This configuration enables the PMOS to conduct current when the gate is at a lower potential, effectively allowing it to act as a switch in digital circuits. By connecting the source to VDD, the PMOS transistor can efficiently control the flow of current to the load connected to the drain.
Emitter biasing is when you add a resistor between the emitter of a transistor and the 0v rail so that any voltage developed across the emitter will subtract from the voltage on the base and effectively turn the transistor OFF. We are talking about an NPN transistor and the transistor is an "ordinary transistor" or BJT (bi-polar Junction Transistor). For more information on transistor biasing see: Talking Electronics website.
0.7V
The Junction Field Effect Transistor (JFET)exhibits characteristics which often make it more suited to a particular application than the bipolar transistor. Some of these applications are: - High Input Impedance Amplifier - Low-Noise Amplifier - Differential Amplifier - Constant Current Source - Analogue Switch or Gate - Voltage Controlled Resistor