Inductive reactance.
It isn't necessarily so. The capacitive voltage is the product of the current and capacitive reactance, while the inductive voltage is the product of the current and the inductive reactance. So it depends whether the capacitive reactance is greater or smaller than the inductive reactance!
Susceptance is the reciprocal of reactance, and is expressed in siemens (symbol: S). So, inductive susceptanceis the reciprocal of inductive reactance, and capacitive susceptance is the reciprocal of capacitive reactance.
Inductive reactance does NOT have it own sign or symbol. Rather, it uses Ohms as a quantifier. But Capacitive reactance ALSO uses Ohms as a quantifier. Fortunately, 1 Ohm of Inductive reactance is cancelled by 1 Ohm of Capacitive reactance at the same frequency of measurement.
Xc(capacitive reactance) = 1/(2piFC)XL(inductive reactance) = 2piFLWhere pi=3.14etc.,F=frequency and C and L are capacitance and inductance.Please pardon lack of proper symbology.
Capacitive reactance is considered negative because it represents the phase relationship between voltage and current in a capacitive circuit. In a capacitor, the current leads the voltage by 90 degrees, meaning that the voltage lags the current. This phase difference is mathematically expressed as a negative sign in the capacitive reactance formula, (X_C = -\frac{1}{\omega C}), indicating that the reactance opposes changes in voltage rather than current.
It is the capacitive reactance of a capacitor that causes it to oppose the passage of a.c. current. Since capacitive reactance is inversely-proportional to frequency, the lower the frequency, the greater its reactance, and the more it will oppose the flow of a.c.
A capacitor will oppose the flow of a.c. due to its capacitive reactance (Xc), expressed in ohms.The capacitive reactance for a given capacitor is inversely-proportional to the frequency of the supply; in other words, the higher the frequency, to lower the capacitive reactance.
The capacitive reactance of a capacitor increases as the frequency decreases.
Because it is. Capacitive reactance is a form of resistance, along with inductive reactance. All are measured in ohms.
Since capacitive reactance is inversely-proportional to the supply frequency, as the frequency is increased, the reactance will decrease.
Inductive reactance, as well as capacitive reactance, is measured in ohms.
yyiiiiii
It isn't necessarily so. The capacitive voltage is the product of the current and capacitive reactance, while the inductive voltage is the product of the current and the inductive reactance. So it depends whether the capacitive reactance is greater or smaller than the inductive reactance!
Inductive reactance, as well as capacitive reactance, is measured in ohms.
Susceptance is the reciprocal of reactance, and is expressed in siemens (symbol: S). So, inductive susceptanceis the reciprocal of inductive reactance, and capacitive susceptance is the reciprocal of capacitive reactance.
Inductive reactance is traditionally positive while capacitive reactance is traditionally negative. Those are the conventions used by electrical engineers and they are consistent with a time-dependency of exp(+jwt).
Inductive reactance does NOT have it own sign or symbol. Rather, it uses Ohms as a quantifier. But Capacitive reactance ALSO uses Ohms as a quantifier. Fortunately, 1 Ohm of Inductive reactance is cancelled by 1 Ohm of Capacitive reactance at the same frequency of measurement.