whenever the cable lengthened so is the resistance, their proportional to each other
The insulation resistance remains the same throughout the entire length of the conductor.
Doubling the diameter of a circular-section conductor will quadruple its cross-sectional area and, therefore, reduce its resistance by a quarter. Doubling the length of a conductor will double its resistance. So, in this example, the resistance of the conductor will halve.
It increases. The time constant of a simple RC circuit is RC, resistance times capacitance. That is the length of time it will take for the capacitor voltage to reach about 63% of a delta step change. Ratio-metrically, if you double the resistance, you will double the charge or discharge time.
resistivity and resistance are two diff. things...........resistance depends on length and thickness resisitivity too depends on the area and length resistivity=resistance*area/length
ERMM THE RESISTANCE INCREASES ) when longer
Double the area means half the resistance. Resistance = resistivity times length / area. Resistivity is a property of the material only.
The insulation resistance remains the same throughout the entire length of the conductor.
If you double the length of the wire while keeping the resistance constant, the current will halve because resistance is directly proportional to the length of the wire. This is described by Ohm's law (V = I * R), where V is voltage, I is current, and R is resistance.
Double the length is double the resistance. Resistance of a wire is the resistivity of the material, times the length, divided by the cross-section area.
Doubling the diameter of a circular-section conductor will quadruple its cross-sectional area and, therefore, reduce its resistance by a quarter. Doubling the length of a conductor will double its resistance. So, in this example, the resistance of the conductor will halve.
If the length of the conductor is halved, the resistance of the conductor also decreases by half. This is because resistance is directly proportional to the length of the conductor. Shortening the length leads to fewer collisions between electrons and reduces the overall resistance.
eat dick
As the length of the wire increases, the resistance also increases. This is because a longer wire offers more opposition to the flow of electrical current compared to a shorter wire. Resistance is directly proportional to length, so doubling the length of the wire will double its resistance.
The resistance of a wire is directly proportional to its length, so doubling the length will also double the resistance. Therefore, doubling the 4 ohm resistance wire will result in a new resistance of 8 ohms.
Assuming the wire follows Ohm's Law, the resistance of a wire is directly proportional to its length therefore doubling the length will double the resistance of the wire. However when the length of the wire is doubled, its cross-sectional area is halved. ( I'm assuming the volume of the wire remains constant and of course that the wire is a cylinder.) As resistance is inversely proportional to the cross-sectional area, halving the area leads to doubling the resistance. The combined effect of doubling the length and halving the cross-sectional area is that the original resistance of the wire has been quadrupled.
Other things being equal, a greater length will result in more resistance.
resistance is directly proportional to wire length and inversely proportional to wire cross-sectional area. In other words, If the wire length is doubled, the resistance is doubled too. If the wire diameter is doubled, the resistance will reduce to 1/4 of the original resistance.