answersLogoWhite

0

the maximum amplitude of carrier wave varied with respect to instantaneous values of message signal is called amplitude modulation

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Engineering

When modulation frequency is doubled modulation index also doubled in case of FM or pm or am?

In Frequency Modulation (FM), if the modulation frequency is doubled, the modulation index does not necessarily double; it depends on the amplitude of the modulating signal. In Amplitude Modulation (AM), the modulation index is defined as the ratio of the peak amplitude of the modulating signal to the carrier amplitude, so it remains unchanged with varying modulation frequency. For Phase Modulation (PM), similar to FM, the modulation index is influenced by the amplitude of the modulating signal and does not inherently double with the modulation frequency. Thus, modulation frequency and modulation index are not directly linked in this way for FM, PM, or AM.


When signal amplitude is equal to carrier amplitude then modulation index is?

amplitude modulating signal


How transmitted power is related to modulation index in am?

In amplitude modulation (AM), the modulation index (m) represents the ratio of the peak amplitude of the modulating signal to the peak amplitude of the carrier signal. The transmitted power in an AM signal increases with the modulation index, as higher modulation indices lead to greater variations in the carrier's amplitude. Specifically, the total transmitted power can be expressed as a function of the carrier power and the modulation index, with more power being allocated to sidebands as m increases. However, beyond a certain point, further increasing the modulation index can lead to distortion, as the signal may exceed the linear range of the amplifier.


What do you mean by depth of modulation index?

The depth of modulation index refers to the extent to which a carrier signal is varied by a modulating signal in amplitude modulation (AM). It is typically expressed as a percentage and indicates how much the amplitude of the carrier wave changes in response to the modulating signal. A modulation index of 100% means full modulation, where the carrier's amplitude varies completely with the modulating signal. Values above 100% can lead to distortion and over-modulation, impacting the quality of the transmitted signal.


Sinusoidal pwm generation using modulation index?

Not sure what type of modulation you are looking for, but there are two that can be manipulated, either individually or in conjunction:Frequency modulation index refers to the relation between the sine wave frequency (sine_freq) and the triangle (or saw-tooth) wave frequency (triang_freq).The frequency modulation index is equal to ((triang_freq)/(sine_freq)).Amplitude modulation index refers to the relation between the sine wave amplitude (sine_amp) and the triangle (or saw-tooth) wave amplitude (triang_amp).The amplitude modulation index is equal to ((sine_amp)/(triang_amp)).Varying the modulation index (normally by varying the frequency or amplitude of the triangle wave form) changes that respective modulation index.From personal experience, an appropriate amplitude modulation index for an SPWM waveform should be around 0.8(that is, if the triangle has an amplitude of 10, the sine would have an amplitude of 8). This index should never be equal to 1 (one); it should always be less. A.K.A.: the triangle-wave amplitude should always be greater than the sine-wave.On the other hand, a triangle-wave frequency much greaterthan the sine-wave frequency makes an SPWM that in turn generates a "cleaner" synthesized sine-wave in the H-bridge you are probably using. Try different freq. modulation indexes, but an index of at least 10 should be used (preferably somewhere around 100 if you want a good SPWM). That is, if the sine-wave frequency is 60 Hz, the triangle-wave frequency should be above 600, preferably 6,000 or more. Complications in the filter design in the "output" of the H-bridge will vary greatly when playing around with the frequency modulation index. That being said, keeping the amplitude modulation index at a static 0.8, and playing around with the triangle-wave frequency should be your best bet.

Related Questions

The values of amplitude modulation index is objective types?

The values of amplitude modulation index is categorized as an objective type.


When modulation frequency is doubled modulation index also doubled in case of FM or pm or am?

In Frequency Modulation (FM), if the modulation frequency is doubled, the modulation index does not necessarily double; it depends on the amplitude of the modulating signal. In Amplitude Modulation (AM), the modulation index is defined as the ratio of the peak amplitude of the modulating signal to the carrier amplitude, so it remains unchanged with varying modulation frequency. For Phase Modulation (PM), similar to FM, the modulation index is influenced by the amplitude of the modulating signal and does not inherently double with the modulation frequency. Thus, modulation frequency and modulation index are not directly linked in this way for FM, PM, or AM.


What is the range of modulation index in am?

The range of modulation index in amplitude modulation (AM) is typically between 0 and 1. A modulation index of 0 indicates no modulation, while a modulation index of 1 represents full modulation where the carrier signal amplitude varies from zero to peak value.


When signal amplitude is equal to carrier amplitude then modulation index is?

amplitude modulating signal


What do you mean 50 percent modulation index?

A(m)/A(c)=0.5 is known as 50% modulation index. where, A(m)=amplitude of message signal A(c)=amplitude of carrier signal


How transmitted power is related to modulation index in am?

In amplitude modulation (AM), the modulation index (m) represents the ratio of the peak amplitude of the modulating signal to the peak amplitude of the carrier signal. The transmitted power in an AM signal increases with the modulation index, as higher modulation indices lead to greater variations in the carrier's amplitude. Specifically, the total transmitted power can be expressed as a function of the carrier power and the modulation index, with more power being allocated to sidebands as m increases. However, beyond a certain point, further increasing the modulation index can lead to distortion, as the signal may exceed the linear range of the amplifier.


What is depth of modulation?

In amplitude modulation, modulation depth refers to the ratio of the unmodulated carrier amplitude to the amplitude deviation for which the modulated carrier wave reaches its minimum value. If this minimum value is zero, the modulation depth is 100%.For amplitude modulation,modulation depth = (a-b)/(a+b),wherea is the unmodulated carrier amplitude, andb is the minimum amplitude deviation.The modulation depth ratio is also referred to as the modulation index.


What is modulated depth?

In amplitude modulation, modulation depth refers to the ratio of the unmodulated carrier amplitude to the amplitude deviation for which the modulated carrier wave reaches its minimum value. If this minimum value is zero, the modulation depth is 100%.For amplitude modulation,modulation depth = (a-b)/(a+b),wherea is the unmodulated carrier amplitude, andb is the minimum amplitude deviation.The modulation depth ratio is also referred to as the modulation index.


In FM does the amplitude remains constant?

In frequency modulation (FM) the amplitude does not remain constant. Instead, the amplitude varies according to the modulation index and the frequency of the modulating signal. This is in contrast to amplitude modulation (AM), where the amplitude of the carrier signal is modulated while the frequency remains constant.


What do you mean by depth of modulation index?

The depth of modulation index refers to the extent to which a carrier signal is varied by a modulating signal in amplitude modulation (AM). It is typically expressed as a percentage and indicates how much the amplitude of the carrier wave changes in response to the modulating signal. A modulation index of 100% means full modulation, where the carrier's amplitude varies completely with the modulating signal. Values above 100% can lead to distortion and over-modulation, impacting the quality of the transmitted signal.


What are the charateristics of amplitude modulation?

Amplitude modulation (AM) is a method of impressing data onto an alternating current waveform by varying its amplitude in relation to the data being sent. The main characteristics of AM include the modulation index, which determines the amount of variation in the carrier wave, and the sidebands that are created as a result of modulation. AM is susceptible to noise and interference due to its reliance on the amplitude of the signal.


Sinusoidal pwm generation using modulation index?

Not sure what type of modulation you are looking for, but there are two that can be manipulated, either individually or in conjunction:Frequency modulation index refers to the relation between the sine wave frequency (sine_freq) and the triangle (or saw-tooth) wave frequency (triang_freq).The frequency modulation index is equal to ((triang_freq)/(sine_freq)).Amplitude modulation index refers to the relation between the sine wave amplitude (sine_amp) and the triangle (or saw-tooth) wave amplitude (triang_amp).The amplitude modulation index is equal to ((sine_amp)/(triang_amp)).Varying the modulation index (normally by varying the frequency or amplitude of the triangle wave form) changes that respective modulation index.From personal experience, an appropriate amplitude modulation index for an SPWM waveform should be around 0.8(that is, if the triangle has an amplitude of 10, the sine would have an amplitude of 8). This index should never be equal to 1 (one); it should always be less. A.K.A.: the triangle-wave amplitude should always be greater than the sine-wave.On the other hand, a triangle-wave frequency much greaterthan the sine-wave frequency makes an SPWM that in turn generates a "cleaner" synthesized sine-wave in the H-bridge you are probably using. Try different freq. modulation indexes, but an index of at least 10 should be used (preferably somewhere around 100 if you want a good SPWM). That is, if the sine-wave frequency is 60 Hz, the triangle-wave frequency should be above 600, preferably 6,000 or more. Complications in the filter design in the "output" of the H-bridge will vary greatly when playing around with the frequency modulation index. That being said, keeping the amplitude modulation index at a static 0.8, and playing around with the triangle-wave frequency should be your best bet.