12 milliamps
yes... this is possible if a diode i connected in reverse bias with a battery and a resistor for example. A diode in reverse bias means its anode will be connected to positive terminal of the battery and its cathode to the negative terminal of the battery. In such a case, minimal current flows through the circuit which can be neglected.
A circuit with a 2 ohm resistor and a 4 ohm resistor in series with a 12 volt battery will have 2 amps flowing through each resistor. The current is the same in each resistor because they are in series, and a series circuit has constant current throughout.
You just stated that the voltage across the resistor is 15 volts, so that's your answer ! If the resistor is connected to a 15-V battery or to the output of a 15-V power supply, then a meter across the resistor is also across the power supply, and reads 15 volts. The current through the resistor is (V/R) = (15/2700) = 5.56 mA. The power dissipated by the resistor (and delivered by the battery) is (V2/R) = (225/2700) = 0.083 watt.
Think it through. You are adding a second path for current flow. Current flow will increase to some extent. Therefore, with more current flow, resistance must....
The same as what? when an inductor is connected in series with a resistor and a current passed through them, the voltages across the resistor and inductor are equal when the reactance is equal to the resistance: 2.pi.f.L = R
All the way along when the crocodile clip is connected to a resistor, when the other end of the resistor is connected to the other side of the battery.
Voltage = Current * ResistanceVoltage = 12VResistance = 10 ohmsCurrent = Voltage/ResistanceCurrent = 12V/10 ohmsCurrent = 1.2 Amps
When resistors are connected in series, the flow of current through them is the same. This means that the current passing through each resistor is equal, as it has to pass through each resistor in the series circuit.
A multimeter set to measure current (in amperes or milliamperes) would be connected in series to the resistor to measure the current flowing through it. The multimeter would be placed in series with the resistor to accurately measure the current passing through it.
yes... this is possible if a diode i connected in reverse bias with a battery and a resistor for example. A diode in reverse bias means its anode will be connected to positive terminal of the battery and its cathode to the negative terminal of the battery. In such a case, minimal current flows through the circuit which can be neglected.
A circuit with a 2 ohm resistor and a 4 ohm resistor in series with a 12 volt battery will have 2 amps flowing through each resistor. The current is the same in each resistor because they are in series, and a series circuit has constant current throughout.
True
1amp
Current flows through a resistor, not across it.
When an electric current flows through a resistor, the resistor resists the flow of the current, causing a decrease in the current. This decrease in current is proportional to the resistance of the resistor, as described by Ohm's Law.
2
Current will always flow in both resistors, but the one with the lower resistance will have more current flow through it. The value of the current in each resistor is calculated by dividing the voltage of the source by the resistance of the individual resistor. As long as the capability of the power source isn't exceeded, the current through each resistor isn't affected by the presence of the other resistor. Said another way, if two resistors are connected in parallel across a source, neither one "cares" that the other resistor is connected across the source. The two resistors work independently.