There is no such thing as a "parallel series".
The total effective resistance of many resistors in series is the sum of the
individual resistances. It's more than the greatest individual.
The total effective resistance of many resistors in parallel is the reciprocal of the
sum of the individual resistances' reciprocals. It's less than the smallest individual.
A resistance 'network' consists of a number of resistors connected together in series, or in parallel, or in series-parallel, or as a complex circuit. A 'complex' circuit is one that is not series, parallel, or series-parallel.
Parallel, series, and series parallel
That's like having a series combination of 4 + 4 ohms, in parallel with another resistance of 4 ohms. Calculate the series resistance, then use the parallel formula to combine it with the third resistance.
Three resistors in series have a higher total resistance than three resistors in parallel. In a series configuration, the total resistance is simply the sum of the individual resistances (R_total = R1 + R2 + R3). In contrast, for resistors in parallel, the total resistance is less than the smallest individual resistor and is calculated using the formula 1/R_total = 1/R1 + 1/R2 + 1/R3. Therefore, series resistors result in greater resistance compared to parallel resistors.
To calculate the uncertainty in equivalent resistance, first determine the resistance values and their uncertainties for each resistor in the circuit. Use the appropriate formula for combining resistances (series or parallel) and apply error propagation techniques. For series resistances, uncertainties add linearly, while for parallel resistances, use the formula for relative uncertainties to combine them. Finally, express the total uncertainty in the equivalent resistance based on the calculated result.
When resistors are wired in series, their resistances are added to find the total resistance. If they are run in parallel, or series-parallel, the formula is different
A resistance 'network' consists of a number of resistors connected together in series, or in parallel, or in series-parallel, or as a complex circuit. A 'complex' circuit is one that is not series, parallel, or series-parallel.
Parallel, series, and series parallel
Equivalent resistance of a series circuit is the sum of the resistance of all appliances. The formula is R=R1+R2+... where R is equivalent resistance, R1, R2 and so on is the resistance of the individual appliances.
AnswerInductances add in series, so the formula is simply L=L1+L2. Inductance is handled in the same manner as resistance in serial and parallel circuits.
That's like having a series combination of 4 + 4 ohms, in parallel with another resistance of 4 ohms. Calculate the series resistance, then use the parallel formula to combine it with the third resistance.
Three resistors in series have a higher total resistance than three resistors in parallel. In a series configuration, the total resistance is simply the sum of the individual resistances (R_total = R1 + R2 + R3). In contrast, for resistors in parallel, the total resistance is less than the smallest individual resistor and is calculated using the formula 1/R_total = 1/R1 + 1/R2 + 1/R3. Therefore, series resistors result in greater resistance compared to parallel resistors.
The ratio of the equivalent resistance of series combination to the parallel combination of n equal resistors is (n^2 - 1)/n.
A resistance 'network' consists of a number of resistors connected together in series, or in parallel, or in series-parallel, or as a complex circuit. A 'complex' circuit is one that is not series, parallel, or series-parallel.
No, series parallel, as it implies has components of the circuit configured in both series and parallel. This is typically done to achieve a desired resistance in the circuit. A parallel circuit is a circuit that only has the components hooked in parallel, which would result in a lower total resistance in the circuit than if the components were hooked up in a series parallel configuration.
To calculate the uncertainty in equivalent resistance, first determine the resistance values and their uncertainties for each resistor in the circuit. Use the appropriate formula for combining resistances (series or parallel) and apply error propagation techniques. For series resistances, uncertainties add linearly, while for parallel resistances, use the formula for relative uncertainties to combine them. Finally, express the total uncertainty in the equivalent resistance based on the calculated result.
The current through each resistor is equal to the voltage across it divided by its resistance for series and parallel circuits.