answersLogoWhite

0

to reduce the flow of current & keeping the current through galvanometer within safe limits.

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

How can you convert galvanometer into ammeter?

Since Galvanometer is a very sensitive instrument therefore it can't measure heavy currents. In order to convert a Galvanometer into an Ammeter, a very low resistance known as "shunt" resistance is connected in parallel to Galvanometer. Value of shunt is so adjusted that most of the current passes through the shunt. In this way a Galvanometer is converted into Ammeter and can measure heavy currents without fully deflected.


What kind of meter is created when is shunt is added to a galvanometer?

A galvanometer with a low resistance shunt in parallel makes an ammeter.


How you convert galvanometer into ammeter in detail?

By attaching a resistance in parallel connection with the galvanometer. Or when a low resistor connected in parallel with galvanometer ,the galvanometer is converted in ammeter. and the resistor is called shunt resistance.


Why shunt resistance is used ammeter?

A shunt resistance is a low resistance connected parallel to the galvanometer so that a large portion of current passes through the low resistance and a small fraction of current passes through the galvanometer this saves the galvanometer from damage


Why galvanometer is converted into ammeter?

A galvanometer is converted into an ammeter by adding a low resistance called a shunt in parallel with the galvanometer coil. This shunt diverts most of the current around the galvanometer, allowing it to measure higher currents accurately. The shunt creates a parallel path with a known resistance, which scales the current to provide a direct reading on the ammeter.


Moving coil galvanometer converted into a multi range ammeter?

To convert a moving coil galvanometer into a multi-range ammeter, you can add shunt resistors of different values in parallel to the galvanometer. By selecting the appropriate shunt resistor, you can change the range of the ammeter. This allows the ammeter to measure a wide range of currents while still using the sensitive galvanometer as the measuring element.


How do you convert a galvanometer to an ammeter?

A galvanometer is an instrument used to measure and detect electric currents. While that seems a lot similar to an ammeter, it only deals with measuring relatively small or mediocre currents. Although an ammeter is now much preferred due to its more accurate, faster, and advanced readings, there is a way to "convert" a galvanometer to function like an ammeter. A current separator or divider, known as a shunt, allows a simple meter to be calibrated (adjusted) to measure larger currents. The shunt, parallel to the coil of your galvanometer, allows more electric currents to circulate around the circuit, thus obtaining more current.


Why wouldn't the shunt resistor in the ammeter protect the ammeter when the ammeter is connected in parallel?

Connecting an ammeter in parallel subjects that ammeter to the full supply voltage. The shunt resistor is not designed to sustain that value of voltage and will burn out. Also, the clue is in the word 'shunt' (which means 'in parallel') which means that the coil will also burn out!


Why shunt resistance is connected in the parallel?

Shunt means parallel only..................


What are the differences of Long shunt vs short shunt generator?

In long shunt the shunt field winding is in parallel to both generator and series field. In short shunt the shunt field is in parallel to generator only.


How does a series circuit work with an ammeter?

Actually ammeter is a galvanometer which is shunted by a resistance called shunt. For large currents major part of it is bypassed through the shunt. The parallel combination of shunt resistance and meter resistance is added to the circuit resistances , so the value indicated by the ammeter is slightly lesser than the actually value.


How is a shunt coil installed?

'Shunt' is an archaic term, meaning 'in parallel with'. So a 'shunt coil' is connected 'in parallel' with... With what, of course, depends upon what sort of device you are talking about. For example the field coil of a d.c. shunt-connected motor has its field winding connected in parallel ('shunt') with the supply.