Two words: skin effect. Now let's chat. Picture a wire with DC flowing through it. We are going to look at a cross section of the wire without interrupting current flow. Make sense? Picture it. When current flows in a wire in only one direction (DC), it uses all the available metal in the wire. Current flow in the middle of the wire will be about the same per unit of cross sectional area as current flow will be near the outside of the wire. Let's switch our DC for some AC. AC (alternating current) will flow in one direction for a while and then reverse direction to flow the other way for a while. Such is AC. And AC will cause current flow that uses all the available cross sectional area of the wire just as DC does, but only at low frequency. At higher and higher frequencies, current flow in the wire will shift away from the center and be more concentrated near the surface of the conductor. Near the skin of the conductor. AC of higher frequencies will promote current flow by skin effect, and that is the effect of frequency in AC current flow.
That depends on the circuit. For a pure resistive circuit (no inductance and capacitance), the frequency will have no effect on the current.
:) It's connected together
Ohm's law states that the current in a circuit is inversely proportional to the circuit resistance. There is a single path for current in a series circuit. The amount of current is determined by the total resistance of the circuit and the applied voltage.
That depends on actual circuit impedances and without knowing them cannot be answered in any way. But if all the circuit impedances are purely resistive, there will be no change in current flow with any change in frequency.
Ohm's law gives the relationship between current, voltage, and resistance. The law states that I=V/R, where I is current, V is voltage, and R is resistance. Source: university digital fundamentals
In an electrical circuit, the relationship between voltage and frequency is that they are independent of each other. Voltage refers to the electrical potential difference between two points in a circuit, measured in volts. Frequency, on the other hand, refers to the number of cycles per second of an alternating current, measured in hertz. While voltage can affect the power of an electrical circuit, frequency determines the speed at which the current alternates direction.
There is no such equation. The main reason is that there is no relationship between current and frequency.
The relationship between capacitance and current in an electrical circuit is that capacitance affects the flow of current in the circuit. A higher capacitance means the circuit can store more charge, which can impact the current flowing through the circuit. The current in a circuit with capacitance can change over time as the capacitor charges and discharges.
In a circuit with constant voltage, the relationship between current and resistance is inversely proportional. This means that as resistance increases, the current flowing through the circuit decreases, and vice versa.
In a purely capacitive circuit, the current and the components have a relationship where the current leads the voltage by 90 degrees. This means that the current and voltage are out of phase in a purely capacitive circuit.
The current in an LC circuit is significant because it creates oscillations between the inductor and capacitor, leading to the circuit's resonant frequency. This current affects the overall behavior by determining the rate at which energy is exchanged between the inductor and capacitor, influencing the amplitude and frequency of the oscillations in the circuit.
Current lags voltage in an inductive circuit. The angle by which it lags depends on the frequency of the AC, and on the relative size of the inductance compared to the resistance in the circuit.
The relationship between resistance and current in an electrical circuit is described by Ohm's Law, which states that the current flowing through a circuit is directly proportional to the voltage applied and inversely proportional to the resistance in the circuit. In simpler terms, as resistance increases, the current flowing through the circuit decreases, and vice versa.
The current vs voltage graph shows that there is a linear relationship between current and voltage in the given circuit. This means that as voltage increases, the current also increases proportionally.
In an electrical circuit, the relationship between current and resistance is described by Ohm's Law. This law states that the current flowing through a circuit is directly proportional to the voltage applied and inversely proportional to the resistance in the circuit. In simpler terms, as resistance increases, the current flowing through the circuit decreases, and vice versa.
The relationship between power (P), current (i), and resistance (r) in an electrical circuit is described by the formula P i2 r. This means that power is directly proportional to the square of the current and the resistance in the circuit.
The relationship between current and capacitance in an electrical circuit is that capacitance affects the flow of current in the circuit. Capacitance is a measure of how much charge a capacitor can store, and it influences the rate at which current can flow through the circuit. A higher capacitance can result in a slower flow of current, while a lower capacitance allows for a faster flow of current.