In a series circuit, the total resistance is the sum of the individual resistances of each load. This means that if you have multiple resistors (or loads) connected in series, you can calculate the total resistance by simply adding their resistances together: ( R_{total} = R_1 + R_2 + R_3 + \ldots ). Each load's resistance contributes to the overall resistance, affecting the current flow through the circuit. The voltage across each load can vary depending on its resistance, following Ohm's Law.
The total resistance of a circuit is the sum of the supply's internal resistance and its load resistance, because they are in series with each other. This is true regardless of the magnitude of, or the variation in, the current.
The circuit will become an open circuit.
If a 'parallel' circuit has more than one load in its (not "it's"!) branches, then it is not a parallel circuit, but a series-parallel circuit! To resolve the circuit, you must first resolve the total resistance of the loads within each branch.
In a series circuit, the voltage drop across each resistor is proportional to its resistance value according to Ohm's Law (V = IR). The total voltage supplied by the source is divided among the resistors, so the sum of the individual voltage drops equals the total voltage. As a result, resistors with higher resistance will have a larger voltage drop compared to those with lower resistance.
The total current decreases.According to the Ohm's law the current & the resistance are inversely proportional so when we put a load in series with the existing load, the resistance of the circuit increases therefor the current decreases.
The total resistance of a circuit is the sum of the supply's internal resistance and its load resistance, because they are in series with each other. This is true regardless of the magnitude of, or the variation in, the current.
The circuit will become an open circuit.
If a 'parallel' circuit has more than one load in its (not "it's"!) branches, then it is not a parallel circuit, but a series-parallel circuit! To resolve the circuit, you must first resolve the total resistance of the loads within each branch.
You use an "amp gauge" to measure amps in an actual circuit. It is hooked in series with the load. It can be placed anywhere in the circuit as long as it is hooked in series. Mathematically, you have to know the resistance, or wattage and voltage of a circuit. Volts=amps*resistance or amps=volts/resistance, or resistance=volts/amps. Ohms law!
You are correct. What exactly is your question?
In a series circuit, the voltage drop across each resistor is proportional to its resistance value according to Ohm's Law (V = IR). The total voltage supplied by the source is divided among the resistors, so the sum of the individual voltage drops equals the total voltage. As a result, resistors with higher resistance will have a larger voltage drop compared to those with lower resistance.
A load increases the flow of electrical current in a series circuit. No load, no flow.
The total current decreases.According to the Ohm's law the current & the resistance are inversely proportional so when we put a load in series with the existing load, the resistance of the circuit increases therefor the current decreases.
Ohm's Law says Voltage = Current x Resistance With constant voltage, an increase in resistance decreases the current. Now the load can be added in two basic ways. If the load is added in series the resistance will increase. If you add load in parallel the resistance will decrease and the current will increase from the source.
No. Load resistance is the value of the element actually doing the work of the circuit it is connected to. A speaker connected to an amplifier is the load.
On Circuit Resistance = Close to the total load Resistance. Off Circuit Resistance = Near Infinitive High Resistance.
A resistance in series with the circuit. It is most likely a wiring error, loose connection or load hooked in series instead of parallel.