They both decrease genetic variation .
stabilizing selection
Stabilizing Selection-- The extremes are selected against.Example: height; mostly beings tend to the average height- not too many really short ones or really tall ones.Directional selection-- One extreme value is selected for.Example: speed; faster is always better so a population will tend to get faster over time.Disruptive selection-- The extremes are both selected for.This type of selection is not as common as the first two. Example: Prey-type animal with distinctive markings which the predators know will over time move away from the norm in both directions.
When natural selection favors the intermediate version of a characteristic, it is referred to as stabilizing selection. It is the opposite of disruptive selection.
Stabilizing selection
Stabilizing selection.
They both decrease genetic variation .
They both decrease genetic variation .
The three patterns of natural selection are directional selection, stabilizing selection, and disruptive selection. Directional selection favors individuals at one extreme of a trait distribution, stabilizing selection favors the intermediate phenotype, and disruptive selection favors individuals at both extremes of a trait distribution.
Directional selection favors individuals at one extreme of a trait distribution, leading to a shift in the population's trait mean over time. In contrast, stabilizing selection favors individuals with intermediate traits, reducing variation and maintaining the status quo by selecting against extremes. While directional selection promotes change in a trait, stabilizing selection promotes stability within a population's traits.
Well, Directional Selections and Stabilizing selections are different because in Directional Selection, the frequency of a particular trait moves in one direction in a range, while in Stabilizing Selection, the distribution becomes narrower, tending to "stabilize" the average by increasing the proportion of similar individual. Also, I'm not sure about this but I think the continued gene flow tends to decrease the diversity between populations.
Directional selection
stabilizing selection
I'm not sure what "stabilizing directional" selection is, but if you get out a bell curve graph... Stabilizing selection tends to select for individuals around the average, or mean, of a population, which technically makes the curve steeper. Directional selection shifts the average in one direction (shifts the whole curve in one direction). Disruptive selection creates two new averages, which means it splits the one curve into two, smaller, separate curves.
Industrial melanism is an example of directional selection, not stabilizing selection. In this phenomenon, environmental changes such as pollution cause a shift in the frequency of dark-colored individuals within a population, which increases their survival rates due to camouflage. Stabilizing selection, on the other hand, favors the intermediate phenotype, reducing the variation in a population.
They both decrease genetic variation
Stabilizing Selection-- The extremes are selected against.Example: height; mostly beings tend to the average height- not too many really short ones or really tall ones.Directional selection-- One extreme value is selected for.Example: speed; faster is always better so a population will tend to get faster over time.Disruptive selection-- The extremes are both selected for.This type of selection is not as common as the first two. Example: Prey-type animal with distinctive markings which the predators know will over time move away from the norm in both directions.
A common cause of stabilizing selection Heterozygotes are fittest.