I'm having some trouble focusing in on the schematic of the circuit.
Voltage is Current multiplied by Resistance. The formulas for calculating the resistance in parallel and series circuits are: Resistors in Series: R(total)=R1+R2+R3+... Resistors in Parallel: 1/(Rtotal)=(1/R1)+(1/R2)+... Current is a measure of Coulombs of charge per unit of time or I=C/t The current depends on the circuit, whether it has capacitors or resistors, and the exact layout. Current 'flows' through wires in much the same way that water flows through pipes, so if the current meets some resistance (a resistor), some of the current will go through the resistor, but the rest will go through any other available path (like in a parallel circuit).
You have two resistors, each with resistance of 12Ω, and a 12-volt battery. 1). The resistors are in series across the battery. ..... A. voltage across each resistor ..... B. current through each resistor ..... C. power dissipated by each resistor ..... D. total power delivered by the battery 2). The resistors are in parallel across the battery. ..... A. voltage across each resistor ..... B. current through each resistor ..... C. power dissipated by each resistor ..... D. total power delivered by the battery ============================================ 1). ... A. 6 volts ... B. 0.5 Amp ... C. 3 watts ... D. 6 watts 2). ... A. 12 volts ... B. 1 Amp ... C. 12 watts ... D. 24 watts
R2 = 3 ohms Explanation: For a circuit you can use ohms law where: V=I*R Where V is the voltage difference throughout the surface, I is the current, and R is the total resistance of the circuit. In your case you want to find the resistance so you have to change the formula to: R=V/I R of first circuit = 25volts/12.5amps = 2 ohms R of second circuit= 25 volts / 5 amps = 5 ohms The resistors here are connected in series which means that the resistance of the two can be added together. This gives you: Rtot= R1+R2 we found R of the first resistor by calculating the resistance in the first circuit. We also found Rtot which is the resistance in the second circuit, when you connect the two resistors together in series. Rtot=2 ohms+R2 5ohm=2ohms+R2 R2 = 3 ohms If the resistors where connected in parallel you cannot simply add the resistance. In that case: (1/Rtot)=(1/R1)+(1/R2) Hope that helps
The " Ohm " is. 1 ohm is the resistance across which 1 volt of EMF appears when the current through it is 1 Ampere.
The current will increase and will flow more. If voltage increases, current must increase.
What is the current running through resistor four?1 amps..!What is the current running through resistor one? 3 amps...!What is the current running through resistor three? 2amps..!What is the current running through resistor five? 3 amps..!What is the voltage drop running through resistor five? 45 volts...!What is the equivalent resistance through the parallel portion of the circuit? 6 ohmsAnswerA resistor is a conductor, albeit one with a higher resistance than a length of wire, so current passes through it without any problem. The magnitude of the current will, of course, be somewhat lower because of the additional resistance.
To calculate the current running through the 60 ohm resistor in a parallel circuit, you first need to find the total resistance of the circuit. For a parallel circuit, the reciprocal of the total resistance (1/RT) is equal to the sum of the reciprocals of the individual resistances (1/R1 + 1/R2 + 1/R3). Once you find the total resistance, you can use Ohm's Law (I = V/R) to calculate the current running through the 60 ohm resistor.
To find the current through the 40 ohm resistor, first calculate the total resistance of the parallel circuit: 1/Rt = 1/120 + 1/60 + 1/40. Then, calculate the total current using Ohm's Law, I = V/Rt. Finally, use the current divider rule to find the current passing through the 40 ohm resistor.
If they're in parallel, then each resistor acts as if it were the only one,and the presence of any others is irrelevant.The current through the 60-ohm resistor is I = E/R = (120/60) = 2 amperes.
To calculate the total current in the circuit, you first need to find the total resistance by using the formula for resistors in parallel: 1/Total Resistance = 1/120 + 1/60 + 1/40. Once you have the total resistance, you can use Ohm's Law: Current = Voltage / Total Resistance. Finally, to find the current running through the 40 ohm resistor, you divide the total current by the resistance of the 40 ohm resistor.
If they're in parallel, then the resistors have no effect on each other. The current through each one is the same as it would be if the others were not there at all. The current through the 120Ω resistor is 120 volts/120Ω = 1 Ampere. The 60Ω and the 40Ω are red herring resistors.
9 ohms
The current through the 40-ohm resistor is ( E / R ) = (120 / 40) = 3 amperes.The current through the 40-ohm resistor doesn't depend on the 120-ohm resistor. It's the samewhether the 120-ohm is there or not. It would also be the same if there were any other resistor,with any other resistance, connected in place of the 120-ohm resistor. It would also be the sameif there were 3,000 more resistors in parallel, with all different values of resistance (as long asthe whole conglomeration didn't exceed the capabilities of the power source).
A circuit with a 2 ohm resistor and a 4 ohm resistor in series with a 12 volt battery will have 2 amps flowing through each resistor. The current is the same in each resistor because they are in series, and a series circuit has constant current throughout.
There is insufficient information in the question to answer it. You need to provide either the voltage across the resistor, or the power dissipated by the resistor. please restate the question.
6
12 milliamps