If you are asking about bonds of attraction between separate molecules, there are two kinds: dipole-dipole attraction and London dispersion force attraction. Dipole-dipole attraction is the stronger of the two, because the molecules in this case are polar, meaning that electrons are more often clustered at certain spots on the molecule and rarified at the opposite end, resulting in a greater charge on both ends (London dispersion forces are the weak forces of attraction between nonpolar molecules during random, fleeting moments of polarization). These forces are not to be confused with ionic attraction (which is attraction between ions, not molecules) and covalent bonds (which are the forces holding the individual atoms in a molecule together), both of which are stronger than any intermolecular force of attraction (with covalent bonding being the strongest of all bonds at the chemical as opposed to the nuclear level). Keep in mind, though, that the exact strength of attraction varies depending on the electronegativities of the different atoms in the molecule (but the weakest polar molecular bonds are, by definition, stronger than the strongest nonpolar molecular bonds).
Generally, the boiling point of a liquid increases if the intermolecular force, i.e. pressure, increases.
This is an intermolecular attraction of water molecules, associated by hydrogen bonds.
i believe that gold and mercury the weakest metals.
intermolecular force between the sio2 molecule is greater than that of the co2 molecule....the co2 molecule is in it gaseous state while that of the sio2 is crystalline making the intermolecular force stronger than that of the co2 molecule.
The gravitational force (weakest of the four fundamental forces) is the one that comes into play in the situation you describe.
Dispersion forces (London dispersion forces) are generally the weakest type of intermolecular force. These forces are caused by temporary fluctuations in electron distribution around atoms or molecules, leading to weak attractions between them.
The intermolecular force in Ar (argon) is London dispersion forces, which are the weakest type of intermolecular force. This force is caused by temporary fluctuations in electron distribution around the atom, leading to temporary dipoles.
London forces are present in chlorine molecules.
The only intermolecular force that exists in noble gases is known as London dispersion forces, also called Van der Waals forces. These are the weakest type of intermolecular force and are due to temporary fluctuations in electron distribution within the atoms.
London dispersion forces (LDF), they are the weakest IMF (compared to dipole-dipole attraction and hydrogen bonding)
The type of intermolecular force present in Br2 is London dispersion forces. These forces are the weakest of the intermolecular forces and result from temporary fluctuations in electron distribution around the molecule, leading to a temporary dipole moment.
The intermolecular force in AsH3 is dipole-dipole interaction, which occurs between the partial positive charge on the hydrogen atoms and the partial negative charge on the arsenic atom. This force is weaker than hydrogen bonding but stronger than London dispersion forces.
The weakest of the fundamental forces is gravity.
London dispersion forces would affect the melting point the least, as they are the weakest intermolecular force. They are caused by temporary fluctuations in electron density, making them generally less influential on physical properties compared to other intermolecular forces such as hydrogen bonding or dipole-dipole interactions.
Gravity is the weakest force. In order from strongest to weakest is the strong force, the electromagnetic force, the weak force, and gravity. However, this is relative to distance - one could consider that gravity is the strongest force because its effect can be felt over enormous distances, even astronomical distances.
Gravitational force
Dispersion forces, also known as London dispersion forces, are present in all molecules and atoms. These forces are the weakest type of intermolecular interaction and arise from temporary fluctuations in electron distribution within a molecule or atom.