The resting membrane potential is the difference between the inside of the cell relative to the outside. The outside is always taken as 0mv. The resting membrane potential is negative because there is a higher concentration of potassium ions outside the cell (because the membrane is more permeable to potassium ions) than inside. Since potassium ions are positively charged this leads to a negative value.
The resting potential is the stable membrane potential of a cell at rest, typically around -70mV. Repolarization refers to the return of the membrane potential to its resting value after depolarization, where the cell becomes more negative again due to potassium channels opening.
The negative value of the resting membrane potential indicates that the inside of the cell is more negatively charged compared to the outside. This difference in charge, typically around -70 mV in neurons, is primarily due to the distribution of ions, especially potassium (K+) and sodium (Na+), across the cell membrane. The negative resting potential is essential for the generation of action potentials and the overall excitability of the cell. It reflects the cell’s readiness to respond to stimuli.
Repolarization is the phase in which the cell membrane potential returns to its resting state after depolarization. This is driven by the efflux of potassium ions, resulting in the membrane potential becoming more negative. Repolarization is essential for the heart to reset and prepare for the next action potential.
The resting membrane potential is determined by the concentration gradient of ions across the cell membrane, specifically sodium (Na+), potassium (K+), and chloride (Cl-). The uneven distribution of these ions maintained by ion pumps and channels sets up an electrical charge across the membrane, leading to a negative resting potential. The sodium-potassium pump plays a key role in establishing and maintaining this potential.
If the concentration of large intracellular anions..i.e. proteins, which are unable to cross the membrane due to their large size.. were to increase, the resting potential would reach a more negative state, a deviation from -70mV to a more negative value do to these anions.
Repolarization is the phase in which the cell's membrane potential returns to its resting state after depolarization. This is achieved through the efflux of potassium ions from the cell, restoring the negative internal charge. Repolarization is essential for maintaining the cell's ability to generate subsequent action potentials.
The resting membrane potential value for sodium is closer to the equilibrium of potassium because the sodium-potassium pump actively maintains a higher concentration of potassium inside the cell and a higher concentration of sodium outside the cell. This leads to a higher permeability of potassium ions at rest, resulting in the resting membrane potential being closer to the equilibrium potential of potassium.
An increase in Na⁺ conductance would lead to an influx of sodium ions into the cell, causing the membrane potential to become more positive and move closer to the sodium equilibrium potential, which is typically around +60 mV. This depolarization could make the resting membrane potential less negative or even shift it above the threshold for action potential generation. Conversely, a decrease in Na⁺ conductance would reduce sodium influx, potentially stabilizing the resting membrane potential at a more negative value. Overall, changes in Na⁺ conductance directly influence the excitability of the neuron or muscle cell.
Increasing extracellular potassium (K+) reduces the concentration gradient between the inside and outside of the cell, leading to a decrease in the driving force for potassium to exit the cell. As a result, the membrane potential becomes less negative (depolarizes) because the resting membrane potential is influenced by the relative permeability of the membrane to potassium ions. This outcome aligns with the prediction that an increase in extracellular potassium would diminish the negativity of the membrane potential, confirming the importance of K+ concentration gradients in maintaining resting membrane potential.
The resting membrane potential typically measures around -70 to -90 mV in neurons due to the differential distribution of ions across the cell membrane. Primarily, the high permeability of the membrane to potassium ions (K+) allows K+ to flow out of the cell, driven by its concentration gradient. This efflux of K+ creates a negative charge inside the cell relative to the outside. Additionally, the presence of negatively charged proteins and the limited permeability to sodium ions (Na+) contribute to maintaining this negative resting potential.
The electrical potential difference across a cell membrane (the resting potential) is around -65 mV, inside negative. In nerve cells (neurones) or muscle cells this potential difference is reversed during an action potential. Sodium (Na+) channels open and Na+ ions enter the cell down their concentration gradient. This entry of positive charge depolarises the membrane ie it cancels out the resting pootential and then reverses it, so the potential becomes positive inside and negative outside, giving a potential of about +50mV.
negative at a resting value of -70mV