Breakaway torque is the torque required to start the initial movement, in the loosening direction, of a bolt, screw, or nut from its (non−loaded) at rest position with the locking element engaged.
Tightening torque is the torque necessary to move the bolt, screw, or nut along its threaded length in the tightening direction.
Torque and moment are both terms used in physics to describe rotational forces. Torque specifically refers to the force that causes an object to rotate around an axis, while moment is a more general term that can refer to both rotational and linear forces. In the context of physics, torque is a type of moment that specifically relates to rotational motion. They are related in that torque is a specific type of moment that causes rotational motion in an object.
The relationship between disk rotational inertia and the speed at which a disk spins is that the rotational inertia of a disk affects how quickly it can change its speed when a torque is applied. A disk with higher rotational inertia will spin more slowly for a given torque, while a disk with lower rotational inertia will spin faster for the same torque.
In the context of rotational motion, torque is directly proportional to acceleration. This means that increasing torque will result in a greater acceleration, and decreasing torque will result in a lower acceleration. The relationship between torque and acceleration is described by the formula: Torque Moment of Inertia x Angular Acceleration.
The lever arm in torque is the distance between the pivot point and the point where the force is applied. A longer lever arm increases the torque and rotational force applied to an object, while a shorter lever arm decreases the torque and rotational force.
The direction of torque determines the direction of rotational motion of an object. Torque is a force that causes an object to rotate around an axis, and the direction of the torque applied determines the direction in which the object will rotate.
Torque is the rotational force applied to an object, while velocity is the speed at which the object is moving. In rotational motion, torque affects the angular acceleration of an object, which in turn can impact its angular velocity. The relationship between torque and velocity is described by the equation: Torque = Moment of inertia x Angular acceleration.
The net torque acting on an object determines its resulting rotational motion. If the net torque is greater, the object will rotate faster, and if the net torque is smaller, the object will rotate slower.
The torque on a pulley with mass affects its rotational motion by determining how quickly it accelerates or decelerates. A greater torque will cause the pulley to rotate faster, while a smaller torque will result in slower rotation.
Torque is the measure of the rotational force applied to an object, causing it to rotate around a pivot point. Moment of inertia, on the other hand, is a measure of an object's resistance to changes in its rotational motion. Torque depends on force and the distance from the pivot point, while moment of inertia depends on an object's mass distribution and shape.
Breakaway torque is the amount of torque required to overcome the static friction of a stationary object and set it in motion. It is a measure of the minimum force or torque needed to break something free from its initial position.
Torque is the rotational equivalent of force and is responsible for causing rotational motion. Angular acceleration is the rate at which an object's angular velocity changes. The relationship between torque and angular acceleration is defined by Newton's second law for rotation: torque is equal to the moment of inertia of an object multiplied by its angular acceleration.
In physics, moment and torque both refer to the turning effect of a force. However, moment is a general term for the turning effect of any force, while torque specifically refers to the turning effect of a force applied around an axis. Essentially, torque is a type of moment that involves rotational motion around a fixed point. So, torque is a specific type of moment that relates to rotational motion.