answersLogoWhite

0

F = {YA(dl)}/L

Stress = Restoring Force/Area

Stress = {Y(dl)}/L

(Strain) x (Y) = Stress

Strain = (dL)/L

Y : Young's Modulus

A : Area

dL or dl : Change in length

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

What is strain and stress?

stress is load per unit area; when an object is loaded it is under stress and strain and it stretches (strains) until it breaks at its ultimate strength. Stress i srelated to strain in the elastic region by Hooke's law: stress = elastic modulus times strain where modulus is a property of the material and strain is deflection over length


How does the relationship between stress and strain affect the behavior of materials under mechanical loading?

The relationship between stress and strain determines how materials respond to mechanical forces. Stress is the force applied to a material, while strain is the resulting deformation. When a material is subjected to stress, it deforms or changes shape, which is known as strain. The behavior of materials under mechanical loading is influenced by how they respond to stress and strain. Materials can exhibit different properties such as elasticity, plasticity, and brittleness based on their stress-strain relationship.


What word might be used to describe mental strain?

The word "stress" is commonly used to describe mental strain or pressure.


What is the relationship between stress and strain according to Hooke's Law?

According to Hooke's Law, the relationship between stress and strain is linear. This means that the amount of stress applied to a material is directly proportional to the resulting strain it experiences. In other words, as stress increases, strain also increases in a predictable and proportional manner.


How does the field of physics explain the relationship between stress and strain in materials?

In physics, stress is the force applied to a material, while strain is the resulting deformation or change in shape. The relationship between stress and strain in materials is explained by the concept of elasticity, which describes how materials respond to stress by deforming and returning to their original shape when the stress is removed. This relationship is typically represented by a stress-strain curve, which shows how a material deforms under different levels of stress.


What is the relationship between stress and strain in materials under mechanical deformation?

The relationship between stress and strain in materials under mechanical deformation is described by Hooke's Law, which states that stress is directly proportional to strain. This means that as a material is subjected to a force (stress), it will deform (strain) in a predictable and linear manner. The relationship between stress and strain helps engineers and scientists understand how materials behave under different conditions and can be used to predict their mechanical properties.


What does the strain vs stress graph reveal about the relationship between strain and stress in a material under mechanical loading?

The strain vs stress graph shows how a material responds to mechanical loading. It reveals that as stress increases, strain also increases, but not necessarily in a linear manner. The relationship between strain and stress can vary depending on the material's properties and behavior under different loading conditions.


How does the strain experienced by a material relate to the stress applied to it?

The strain experienced by a material is directly related to the stress applied to it. When stress is applied to a material, it causes deformation or change in shape, which is known as strain. The relationship between stress and strain is described by the material's elastic properties, such as Young's Modulus. This relationship helps determine how a material will respond to external forces.


What is the relationship between compression stress and strain in materials under load?

Compression stress is the force applied to a material that causes it to compress, while strain is the resulting deformation or change in shape of the material. The relationship between compression stress and strain in materials under load is typically linear, meaning that as the stress increases, the strain also increases proportionally. This relationship is described by the material's compression modulus, which is a measure of its stiffness under compression.


What is the relationship between the stress and strain in a rubber band as depicted on its stress-strain curve?

The stress-strain curve of a rubber band shows how the stress (force applied) and strain (deformation) are related. Initially, as stress increases, strain also increases proportionally. This is the elastic region where the rubber band returns to its original shape when the stress is removed. However, beyond a certain point, the rubber band reaches its limit and starts to deform permanently, known as the plastic region. The relationship between stress and strain on the curve helps us understand the material's behavior under different conditions.


What is the relationship between volume strain and the deformation of a material under stress?

Volume strain refers to the change in volume of a material when it is subjected to stress. When a material is deformed under stress, it can experience volume strain, which is the result of the material's particles moving closer together or farther apart. The relationship between volume strain and deformation is that as the material deforms, its volume may change due to the stress applied to it.


What is the relationship between stress and strain in the field of physics?

In physics, stress is the force applied to an object, while strain is the resulting deformation or change in shape. The relationship between stress and strain is described by the material's stiffness, known as Young's modulus. This relationship helps scientists understand how materials respond to external forces and can be used to predict their behavior under different conditions.