Increases
capacitors
current decreases and resistance increases
Pressure decreases as height increases and vice-versa.
Where is this capacitor in the circuit?A capacitor across the emitter bias resistor actually increases the AC gain because it bypasses that resistor, by increasing the ratio of collector impedance to emitter impedance which determines the amplifier voltage gain.A capacitor across the base input resistor actually increases the AC gain because it bypasses that resistor, by decreasing the attenuation of the input signal by the input circuit network.
The potential energy of a substance decreases when it changes into a liquid. This is because it's losing the heat energy it had when in gas form to become liquid.
When the frequency of Parallel RL Circuit Increases,XL increases which causes IL (current through inductor) decreases. Decrease in IL causes It (It=Il+Ir) to decrease,which means by relation IT=Vs/Zt ,the Zt (Total Impedance) Increases.
because the distance is propotional to the impedance of the line ,so the operation of the impedance relay comes into picture when the impedance seen by the relay is less than the pre-setting value.When a fault occurs ,the current increases to a high value and so the Impedence decreases and the relay actuates
No, impedance inversion cannot be achieved with a short circuit stub. A short circuit stub will have a low impedance at the point where it is connected, which will not invert the impedance at that point. Impedance inversion can be achieved using techniques such as a quarter-wave transformer or a transmission line with specific impedance characteristics.
As frequency increases, the wavelength decreases and the energy of each photon (in the case of light) increases. Similarly, the period (time taken for one cycle) decreases as frequency increases.
At resonance, the L and C impedance cancels out, so the current can be calculated based on the resistance and applied voltage. Imagine increasing frequency of the supply from 0 Hz to very high. At low frequency, the impedance of the inductor is ~0 (defined as Zl = w*L*j), and the impedance of the capacitor is very large (defined as Zc = 1 / (w*C*j)). As you increase the frequency, the impedance of the capacitor will decrease, as the impedance of the inductor increases. At some point (the resonant frequency), these two will be equal, with opposite signs. After crossing the resonant frequency, the inductor impedance will continue growing larger than the capacitor impedance until the total impedance approaches infinite.
Volume of most substances increases with heat and decreases with cold.
It decreases with height.
In the case of Inferior goods, the demand decreases as income increases.
The wavelength of electromagnetic waves decreases as the frequency increases.
increases
Decreases.
It decreases