A polar molecule has a slight partial negative charge near the atom that attracts the shared electron more strongly, due to its higher electronegativity. This creates a dipole moment, with one end of the molecule being slightly negative and the other end slightly positive, resulting in a separation of charge. Consequently, the molecule exhibits polar characteristics, influencing its interactions with other molecules.
The energy needed to remove an electron from a negative ion to form a neutral atom or molecule is called the electron affinity. It represents the energy change when an electron is added to a neutral atom or molecule to form a negative ion. The higher the electron affinity, the greater the energy needed to remove an electron.
The energy change that occurs when an electron is added to a neutral atom. This is usually exothermic. Noble Gases are excluded from this. Equation: X(element)+e-(electron)---------> X-1+ energy
Electron transfer (ET) occurs when an electron moves from an atom or a chemical species (e.g. a molecule) to another atom or chemical species. ET is a mechanistic description of the thermodynamic concept of redox, wherein the oxidation states of both reaction partners change.
what is the difference between a physical change and a physical property
Atoms move from left to right in each period of the periodic table through a process called "periodic trends." As you move across a period, the atomic number increases, leading to a greater positive charge in the nucleus. This increase in positive charge attracts electrons more strongly, resulting in a decrease in atomic radius and a change in chemical properties. The movement of atoms in this context reflects their increasing nuclear charge and electron configuration.
Electron capture by a dye like DPIP (2,6-Dichlorophenolindophenol) usually leads to a color change in the dye molecule. In this process, the dye molecule accepts an electron from a reducing agent, causing the dye to change from blue (oxidized form) to colorless (reduced form).
The energy needed to remove an electron from a negative ion to form a neutral atom or molecule is called the electron affinity. It represents the energy change when an electron is added to a neutral atom or molecule to form a negative ion. The higher the electron affinity, the greater the energy needed to remove an electron.
The energy change that occurs when an electron is added to a neutral atom. This is usually exothermic. Noble Gases are excluded from this. Equation: X(element)+e-(electron)---------> X-1+ energy
After a physical change the molecule remain intact.After a chemical change the molecule is modified.
Chemical change: the structure of the molecule is modified. Physical change: the structure of the molecule is not modified.
the strarch molecule binds to an enzyme
For one molecule of Pyruvate (pyruvic acid) the Krebs cycle produces 2 molecules of carbon dioxide (CO2), 3 molecules of NADH, one molecule of FADH2, and one molecule of ATP.Also, the change from pyruvate to acetyl CoA produces one NADH and one carbon dioxide molecule; CoA is recycled in and out of the cycle.
Chemical change: the structure of the molecule is chenged. Physical change: the structure of the molecule is not changed.
Generally electron affinity goes up as you go from left to right across the periodic table, and decreases as you go down a column. However, fluorine is an exception -- and the element with the highest electron affinity is chlorine.(Note that the most electronegative element is fluorine however; 'electronegativity' is not exactly the same as 'electron affinity'.)Electronegativity is the ability of an atom in a molecule to draw bonding electrons to itselfElectron affinity is a measure of the energy change when an electron is added to a neutral atom to form a negative ion.The reason that the electron affinity is not as high as might otherwise be predicted for fluorine, is that it is an extremely small atom, and so it's electron density is very high. Adding an additional electron is therefore not quite as favorable as for an element like chlorine where the electron density is slightly lower (due to electron-electron repulsion between the added electron and the other electrons in the electron cloud).
Strongly Agree
Electron transfer (ET) occurs when an electron moves from an atom or a chemical species (e.g. a molecule) to another atom or chemical species. ET is a mechanistic description of the thermodynamic concept of redox, wherein the oxidation states of both reaction partners change.
because you dont change the molecule. H2O IS THE SAME MOLECULE as water, ice or steam