answersLogoWhite

0

Let's start with a basic concept. The color of light is determined by its frequency. And higher frequency light has more energy than lower frequency light. As regards electrons shifting energy levels, when an electron wants to move to a lower energy level, it must radiate energy to do this. And the energy it radiates will be exactly the "right amount" for that electron to go to that lower energy leve. The greater the difference in the starting and finishing energy levels, the more energy the electron will have to radiate away. And this will determine what the energy of the photon will have to be. It will determine its frequency, and, therefore, its color.

User Avatar

Wiki User

16y ago

What else can I help you with?

Related Questions

How did Bohr explain the line spectrum of hydrogen?

The difference in energy between the energy levels determines color of light emitted when an electron moves from one energy level to another.


Is radioactive decay an electron?

No. An electron may be emitted in some cases, though.


What is emitted by an atom as a result of electron capture?

After electron capture a neutrino is released.


What happens when an electrons jumps from one energy level to another?

When an electron jumps from one energy level to another, it either absorbs or emits energy in the form of a photon. This process is called an electron transition and is responsible for the emission or absorption of light in atoms. The difference in energy between the initial and final energy levels determines the wavelength of the emitted or absorbed light.


What is the electron emitted from the atom called?

the gamma ray.


Why is a shorter wavelength of light emitted when an electron falls from n4 to n1 than when an electron falls from n2 to n1?

When an electron falls from n4 to n1, it releases more energy because it is transitioning between high energy states. This higher energy transition corresponds to a shorter wavelength of light being emitted, according to the energy of the photon being inversely proportional to its wavelength. In contrast, when an electron falls from n2 to n1, the energy released is less, resulting in a longer wavelength of light emitted.


What can be emmited from radioactive decay?

Many particles can be emitted from radioactive decay. We have Internal Conversion in which a nucleus transfers the energy to an electron which then releases it. There is also Isometric Transition which is basically the gamma ray (photon). There is the decay in which a nucleon is emitted. In this scenario we can have an alpha decay (in which an alpha particle decays), a proton emission, a neutron emission, double proton emission (two protons are emitted), spontaneous fission (the nucleus brakes down into two smaller nuclei and/or other particles) and we have the cluster decay (where the nucleus emits a smaller nucleus). There is the beta decay too. There is the Beta decay (electron and electron antineutrino are emitted), positron emission (a positron and an electron neutrino are emitted), electron capture (an electron is captured by the nucleus and a neutrino is emitted), bound state beta decay (the nucleus decays to an electron and an antineutrino but here the electron is not emitted since it is captured into a K-shell), double beta decay (two electrons and two antineutrinos are emitted), double electron capture (the nucleus absorbs two electrons and emits two neutrinos), electron capture with positron emission (an electron is absorbed and a positron is emitted along with two neutrinos), and double positron emission (in which the nucleus emits two positrons and two neutrons).


What is an electron or particle similar to an electron emitted from the nucleus with negligible mass and a charge of -1?

In this context, we call an electron a beta particle.


What determines the frequency ( color ) of photons?

Frequency determines color. Frequency is determined by the origin of the photon, i.e. emitted from an excited atom.


Does a beta particle have an identical charge to an electron?

Yes, a beta particle is either an electron or a positron. In beta decay, an electron is emitted (beta-minus decay), which has a negative charge, while a positron is emitted in beta-plus decay, which has a positive charge.


How is the change in electron energy related to the frequency of light emitted in electron transitions?

Its right in the book (in bold) and has a key next to it.


What atomic particle do a beta particle resembles?

A beta particle is a negative electron. A positive electron is a Positron.