answersLogoWhite

0

a free electron may absorb a photon only if its parity changes

User Avatar

Wiki User

15y ago

What else can I help you with?

Related Questions

How light is absorb?

By the agitation of an electron by a photon.


Can the electron in the ground state of hydrogen absorb a photon of energy 13.6eV and greater than 13.6eV?

yes , the electron in the ground state of the hydrogen atom will absorb a photon of energy 13.6ev but not greater than 13.6 ev . because 13.6 ev is the energy which excites the hydrogen atom


Compton scattering is defined as what?

Compton scattering is an inelastic scattering of a photon by a free charged particle, usually an electron. It results in a decrease in energy of the photon.


Can you explain why an electron's energy increases when it absorbs a photon and also describe what happens to the photon in this process?

When an electron absorbs a photon, its energy increases because the photon transfers its energy to the electron. The photon ceases to exist as a discrete particle and its energy is absorbed by the electron, causing it to move to a higher energy level.


Which of the following complexes will absorb a photon with the lowest energy level?

The complex with the lowest energy level will absorb a photon.


What has to happen before you can move to a new energy level in the electron cloud?

An electron must absorb or release a specific amount of energy, typically in the form of a photon, to move to a new energy level in the electron cloud. This process is known as electron excitation or de-excitation.


Why electron jumps from ground state to exicted state?

An electron jumps from the ground state to an excited state when it absorbs energy, typically in the form of a photon. This causes the electron to move to a higher energy level, creating an excited state. When the electron later falls back to the ground state, it releases the absorbed energy in the form of a photon.


How can a photon be destroyed or created?

A photon can be created when an electron transitions to a lower energy level and emits a photon. Conversely, a photon can be absorbed and "destroyed" when it is absorbed by an electron, causing the electron to transition to a higher energy level.


When sunlight excites electrons how do the electrons change?

Depending on the energy (frequency) of the specific photon hitting the electron, one of three events happens: nothing, the electron is excited, or the electron leaves the atom. If the energy of the photon very high, the electron can absorb the energy and escape the nucleus' pull. This is called ionization. If the energy of the photon lines up with the energy spacing in the atoms energy levels, the electron will move to a higher energy state, becoming excited. The electron then returns to its original energy level, releasing the energy as light. If the energy of the photon does not fall into one of these categories, the electron does not interact with it. In terms of actually changing the electron, it only changes in energy, not any other property.


When an electron drops to a lower energy level what is the energy of a photon released?

The energy of the photon is the same as the energy lost by the electron


The light bearing packet of energy emitted by an electron is called a?

A packet of light energy is called a photon.


Is an electron and photon the same thing. It seems like my book interchanges them for one another. I'm confused?

No. The electron is not a photon. An electron is a charged particle of matter. A photon is a unit of "energy-time" designated by Planck's Constant h.