The process of halogenation is a chemical reaction between a compound, usually an organic compound and a halogen. An example of halogenation is fluorination or chlorination.
Halogenation is the result that occurs when a chemical is mixed with a halogen.
Halogenation
Well, darling, the reason direct halogenation of aniline is a big no-no is because aniline is a strong activating group that will make the halogenation reaction go haywire and give you a messy mixture of products. Plus, the lone pair on the nitrogen atom in aniline will coordinate with the halogenating agent, making it more selective towards other positions on the ring. So, in a nutshell, direct halogenation of aniline is a recipe for disaster in the lab.
Aromatic compounds undergo halogenation primarily due to the presence of the delocalized π-electron system in their benzene rings, which can stabilize the formation of an intermediate sigma complex. The reaction typically requires a catalyst, such as iron (III) bromide or aluminum chloride, to facilitate the electrophilic substitution process. During halogenation, a halogen molecule is activated to form a more reactive electrophile, allowing it to substitute one of the hydrogen atoms on the aromatic ring without disrupting the overall aromatic stability. This process preserves the aromatic character of the compound while introducing halogen functional groups.
Carbonyl compounds can be halogenated through either base or acid catalysis, although a difference in products can be expected; acid catalysis is more likely to produce alpha-monohalogenated carbonyl compounds (although polyhalogenation is also possible with acid), and base is more likely to produce a polyhalogenated alpha carbonyl compound. Halogenation occurs through an enolate/enol intermediate (base or acid respectively). In the case of basic halogenation an enolate is formed at the alpha position of the carbonyl carbon. The enolate (nucleohile) then attacks the halogen (Br2, Cl2, I2-typically not F2) since the halogen molecule acts as a polarized electrophile. The monohalogenated product is now more reactive than the unhalogenated reactant since the electron withdrawing halogen makes any alpha protons remaining even more acidic and susceptible to abstraction via base to create another enolate, and the process can be repeated.
Halogenation is the result that occurs when a chemical is mixed with a halogen.
free-radical halogenation of acetic acid
Halogenation is typically carried out in an anti fashion.
Halogenation
Well, darling, the reason direct halogenation of aniline is a big no-no is because aniline is a strong activating group that will make the halogenation reaction go haywire and give you a messy mixture of products. Plus, the lone pair on the nitrogen atom in aniline will coordinate with the halogenating agent, making it more selective towards other positions on the ring. So, in a nutshell, direct halogenation of aniline is a recipe for disaster in the lab.
A chemical process or reaction in which a halogen element is introduced into a substance.
because we need hydrogen as well as chlorine in that reaction
alkenes are neutral nucleofiles they undergoes electrophilic addition reactions.
An alkene can undergo halogenation when combined with chlorine or bromine in a halogenation reaction to form a dihalogenated alkane. This reaction involves the addition of a halogen atom across the double bond of the alkene.
because halogenation of alkanes with fluorine is very violently exothermic i.e explosive in nature .
In acidic conditions, alpha halogenation involves the substitution of a hydrogen atom with a halogen atom at the alpha position of a carbonyl compound. This reaction is typically catalyzed by an acid, such as hydrochloric acid, and proceeds through the formation of an enol intermediate, which is then attacked by the halogen to form the halogenated product.
When Iodine solid reacts with this alkene in presence of ethanol 1,2-diiodo-3-ethyl penman is produced stereo chemistry of produced compound shows a significant role for determining the properties of product.