answersLogoWhite

0

Luminosity depends directly on mass because more massive main-sequence stars do not need to graviationally contract as far to reach fusion temperatures, and so they have a larger volume and contain a much larger amount of light energy, which diffuses out and generates a higher luminosity, very roughly in proportion to the higher volume.

User Avatar

Wiki User

14y ago

What else can I help you with?

Continue Learning about Natural Sciences

What type of relationship exists in main sequence stars temperature and brightness?

In main sequence stars, there is a direct relationship between temperature and brightness, known as the Hertzsprung-Russell diagram correlation. Generally, hotter stars emit more light and are thus more luminous. This relationship is due to the physics of stellar fusion, where increased temperature leads to higher energy output. As a result, main sequence stars that are larger and hotter tend to be brighter than their cooler, smaller counterparts.


What is the relationship between luminosity and temperature for stars on the main sequence?

The relationship between luminosity and temperature for stars on the main sequence is described by the Hertzsprung-Russell (H-R) diagram, where more luminous stars are typically hotter. This relationship is generally expressed by the Stefan-Boltzmann law, which states that a star's luminosity is proportional to the fourth power of its temperature (L ∝ T⁴). Consequently, as the temperature of a main sequence star increases, its luminosity also increases significantly, resulting in a clear trend where hotter stars are brighter.


What the relationship between luminosity and temperature for stars on the main sequence?

The relationship between luminosity and temperature for stars on the main sequence is described by the Hertzsprung-Russell diagram, where more luminous stars tend to have higher temperatures. This correlation is largely due to the processes of nuclear fusion occurring in the star's core; as temperature increases, the rate of fusion rises, leading to greater energy output and, consequently, increased luminosity. Specifically, this relationship can be approximated by the Stefan-Boltzmann Law, which states that luminosity increases with the fourth power of the star's temperature. Thus, main sequence stars exhibit a clear trend where hotter stars are generally more luminous.


What is the relationship between Luminosity and Temp for main sequence stars?

The relationship between luminosity and temperature for main sequence stars is described by the Hertzsprung-Russell diagram, where luminosity increases with temperature. This correlation follows a power law, specifically L ∝ T^4, meaning that if a star's temperature increases, its luminosity increases dramatically. Consequently, hotter main sequence stars, like O and B types, are much more luminous than cooler stars, such as K and M types. This relationship arises from the processes of nuclear fusion occurring in the star's core, which depend on temperature and pressure.


What two properties of stars do scientists plot on a hertz sprung-Russell diagram?

Scientists plot the luminosity and surface temperature of stars on a Hertzsprung-Russell diagram. The horizontal axis represents the surface temperature, which decreases from left to right, while the vertical axis represents the luminosity, increasing upwards. This diagram helps illustrate the relationship between these properties and classifies stars into different categories, such as main sequence, giants, and white dwarfs.

Related Questions

Are main sequence stars called medium sized stars?

No. Main sequence stars are simply stars that are fusing hydrogen into helium and have a specific relationship between color and luminosity. They range from red dwarfs to large O-type main sequence stars.


What type of relationship exists in main sequence stars temperature and brightness?

In main sequence stars, there is a direct relationship between temperature and brightness, known as the Hertzsprung-Russell diagram correlation. Generally, hotter stars emit more light and are thus more luminous. This relationship is due to the physics of stellar fusion, where increased temperature leads to higher energy output. As a result, main sequence stars that are larger and hotter tend to be brighter than their cooler, smaller counterparts.


Classification of about 90 percent of the stars?

About 90 percent of stars are classified as main sequence stars, which are stable, fusing hydrogen into helium in their cores. These stars follow a distinct relationship between their luminosity and temperature, known as the Hertzsprung-Russell diagram. Main sequence stars include our Sun and have a lifespan ranging from millions to billions of years.


What is the relationship between luminosity and temperature for stars on the main sequence?

The relationship between luminosity and temperature for stars on the main sequence is described by the Hertzsprung-Russell (H-R) diagram, where more luminous stars are typically hotter. This relationship is generally expressed by the Stefan-Boltzmann law, which states that a star's luminosity is proportional to the fourth power of its temperature (L ∝ T⁴). Consequently, as the temperature of a main sequence star increases, its luminosity also increases significantly, resulting in a clear trend where hotter stars are brighter.


What is the relationship between luminosity and temperature for main sequence stars?

On such a diagram, those stars lie on a curve called the "main sequence". It is not a simple relationship - for example, it isn't a straight line on the diagram. Therefore, it isn't easy to describe in words. It's best if you look up "Main sequence", for example on the Wikipedia, and look at the corresponding diagram.


Is most stars sequence stars?

"main sequence" is the tern.


What are the two stars that are not in the main sequence?

There are billions of stars that are not on the main sequence.


What are the stars in the main sequence?

The smallest stars in the main sequence are the stars with cooler surface temperatures.


How do the masses of star along the main sequence illustrate the mass-luminosity relation?

The mass-luminosity relation demonstrates that a star's luminosity is strongly correlated with its mass, particularly for main sequence stars. Generally, more massive stars are significantly more luminous than their less massive counterparts; this is due to the greater gravitational pressure in their cores, which leads to higher rates of nuclear fusion. As a result, the relationship is roughly expressed as (L \propto M^{3.5}) to (L \propto M^{4}), indicating that a small increase in mass results in a much larger increase in luminosity. This relationship helps to explain the observed distribution of stars along the main sequence in the Hertzsprung-Russell diagram.


What the relationship between luminosity and temperature for stars on the main sequence?

The relationship between luminosity and temperature for stars on the main sequence is described by the Hertzsprung-Russell diagram, where more luminous stars tend to have higher temperatures. This correlation is largely due to the processes of nuclear fusion occurring in the star's core; as temperature increases, the rate of fusion rises, leading to greater energy output and, consequently, increased luminosity. Specifically, this relationship can be approximated by the Stefan-Boltzmann Law, which states that luminosity increases with the fourth power of the star's temperature. Thus, main sequence stars exhibit a clear trend where hotter stars are generally more luminous.


What is the relationship between Luminosity and Temp for main sequence stars?

The relationship between luminosity and temperature for main sequence stars is described by the Hertzsprung-Russell diagram, where luminosity increases with temperature. This correlation follows a power law, specifically L ∝ T^4, meaning that if a star's temperature increases, its luminosity increases dramatically. Consequently, hotter main sequence stars, like O and B types, are much more luminous than cooler stars, such as K and M types. This relationship arises from the processes of nuclear fusion occurring in the star's core, which depend on temperature and pressure.


What kind of stars are 90 of all Stars?

main sequence stars , our sun is also a main sequence star