allosteric effectors have their own specific sites for binding to enzyme. they can bring positiveor negative effect. that depends on the natre of effector.
In an allosteric enzyme, the homotropic effect occurs when the substrate acts as a ligand and binds to the active site, influencing the enzyme's activity. This binding can either enhance or inhibit the enzyme's function, depending on the specific enzyme and substrate involved.
tempeture,ph, solute concentration and salt content
Factors such as temperature, pH, substrate concentration, and the presence of inhibitors or activators can affect how enzymes and substrates come together. Changes in these factors can alter the shape and activity of enzymes, impacting their ability to bind with substrates and catalyze reactions.
An allosteric enzyme is one in which the activity of the enzyme can be controlled by the biniding of a molecule to the "allosteric site". This really just means somewhere other than the active site. Thus allosteric control of an enzyme can be classed in two ways. A positive allosteric modification is the binding of a molecule to the enzyme which increase the rate of reaction. Sort of like catalysing the catalysing effect of an enzyme. Obviously the opposite is true of negative allosteric modification. A good example for this is the activity of phosphofructokinase, which is promoted by a high AMP concentration, and inhibited by a high ATP concentration. This should make sense if you think about the action of a kinase etc.
Because you will still have the same number of enzymes inhibited. For example, you have 20 enzymes and 10 non-competitive inhibitors. Regardless of substrate concentration, at any one time, there will only be 10 enzymes available to accept a substrate. Increasing the substrate concentration does not affect this.
In an allosteric enzyme, the homotropic effect occurs when the substrate acts as a ligand and binds to the active site, influencing the enzyme's activity. This binding can either enhance or inhibit the enzyme's function, depending on the specific enzyme and substrate involved.
tempeture,ph, solute concentration and salt content
Factors such as temperature, pH, substrate concentration, and the presence of inhibitors or activators can affect how enzymes and substrates come together. Changes in these factors can alter the shape and activity of enzymes, impacting their ability to bind with substrates and catalyze reactions.
An allosteric enzyme is one in which the activity of the enzyme can be controlled by the biniding of a molecule to the "allosteric site". This really just means somewhere other than the active site. Thus allosteric control of an enzyme can be classed in two ways. A positive allosteric modification is the binding of a molecule to the enzyme which increase the rate of reaction. Sort of like catalysing the catalysing effect of an enzyme. Obviously the opposite is true of negative allosteric modification. A good example for this is the activity of phosphofructokinase, which is promoted by a high AMP concentration, and inhibited by a high ATP concentration. This should make sense if you think about the action of a kinase etc.
If the point mutation does not change the protein to be translated in the 3-letter sequence, then it will have no effect on the gene's function.
pH can affect the function of enzymes by altering the charge on the amino acid residues in the enzyme's active site. Subtle changes in pH can disrupt the hydrogen bonding and electrostatic interactions that are necessary for enzyme-substrate binding and catalysis. Extreme pH values can denature enzymes, resulting in loss of their structure and consequently their function.
It has no effect
not a thing
A change in pH can alter the ionization of the R groups of the amino acids. When the charges on the amino acids change, hydrogen bonding within the protein molecule changes and the molecule changes shape. The new shape therefore may not be effective
A competitive inhibition and allosteric regulation both involves an inhibitor molecule binding to the enzyme at a different area. The difference between the two is that allosteric inhibitors are modulator molecules which bind somewhere besides the catalytic activity.
Because you will still have the same number of enzymes inhibited. For example, you have 20 enzymes and 10 non-competitive inhibitors. Regardless of substrate concentration, at any one time, there will only be 10 enzymes available to accept a substrate. Increasing the substrate concentration does not affect this.
pH influences enzyme activity by affecting the shape and charge of the active site. Most enzymes have an optimum pH at which they function most effectively. Deviating from this pH can denature the enzyme and reduce its activity.