Can you recognize Cu nanoparticles without TEM microscopy?
Silver nanoparticles are antibacterial, and when embedded in plastics for use in the medical field, are non-toxic. This makes silver nanoparticles useful in plastic applications such as surgical catheters.
Because they give us an advantage and we can make things that we probably thought wouldn't be possible before. Nanoparticles can be used to make cameras the size of a dust particle which can be used medically to check inside people and see what is going on for example. Nanoparticles also have many more purposes but there are some risks in using them and we aren't aware of all of them.
Limestone is the rock that is most useful to modern industrial countries because it is the source for the main ingredient in cement.
They are inorganic catalysts in biochemical reactions. They are also useful in electrolyte and water balance, as well as bone formation, collagen formation, and wound healing.
The bacterial cell produced in step 6 can be useful for various purposes, such as producing insulin for diabetes treatment, enzymes for industrial processes, or proteins for scientific research. By engineering bacteria to express specific genes, we can harness their ability to rapidly multiply and produce desired substances efficiently.
Silver nanoparticles are antibacterial, and when embedded in plastics for use in the medical field, are non-toxic. This makes silver nanoparticles useful in plastic applications such as surgical catheters.
No
You think probable to catalysts, but they are useful.
Silver nanoparticles are used in antibacterial technology embedded in refrigerators, washing machines, air coolers, air conditioners, vacuum cleaners and air purifiers. This helps in blocking transmission of airborne diseases in humans and increases safety of health.
No, nanoparticles are particles that are extremely small, typically between 1-100 nanometers in size, whereas ordinary particles are larger. Nanoparticles exhibit unique physical and chemical properties due to their small size, making them useful in various applications such as medicine, electronics, and environmental science.
Cluster nanoparticles refer to aggregates of nanoparticles that are grouped together, often exhibiting distinct physical and chemical properties compared to individual nanoparticles. Nanoparticles themselves are tiny particles with dimensions in the nanometer scale (1 to 100 nanometers) and can have unique characteristics due to their small size, such as increased reactivity and surface area. These properties make both individual nanoparticles and their clusters useful in various fields, including medicine, electronics, and material science. The behavior and applications of cluster nanoparticles can differ significantly from those of larger particles or bulk materials.
Macroscale structures are typically larger, like the size of human hair or larger, while nanoparticles are on the nanometer scale, typically between 1-100 nm in size. Nanoparticles have unique properties due to their small size, such as high surface area to volume ratio and quantum effects, which can make them useful in a variety of applications.
Catalysts increase the speed of a reaction without taking place in the reaction themselves. This is very useful in industry as it means that chemicals can be made much faster through usually slow chemical reactions, and as the catalysts don't take part in the reaction themselves, they can be reused as much as its needed. Examples of catalysts in industries include the use of the biological catalysts enzymes to brake down substrates in baby foods into smaller simpler molecules. Catalysts lower the activation energy required for a reaction to occur. This will mean that more molecules will have the energy to react. Catalysts allow equilibrium to be established quicker. Catalysts in general lower reaction temperatures leading to lower production costs. Catalysts add to cost e.g. palladium in catalytic converters. Catalysts can be poisoned by waste products eg. Sulphur in petrol and oil can reduce the properties of catalytic converters.
In producing electricity
Because they give us an advantage and we can make things that we probably thought wouldn't be possible before. Nanoparticles can be used to make cameras the size of a dust particle which can be used medically to check inside people and see what is going on for example. Nanoparticles also have many more purposes but there are some risks in using them and we aren't aware of all of them.
10 years
By producing a useful alphabet which is the basis of today's.