B is dominant.
the offspring will have both black and whit feathers.
A test cross with a homozygous recessive guinea pig (bb) would reveal the genotype of the black guinea pig. If all offspring are black, then the black guinea pig is most likely homozygous dominant (BB). If both black and white offspring are produced, then the black guinea pig is likely heterozygous (Bb).
If both parents have the same phenotype, but the offspring did not share that phenotype, then it is likely that the parents have a dominant phenotype, but the offspring has a recessive phenotype, which means that the offpring's genotype would be homozygous recessive, and it's parents' genotypes would be heterozygous. For example, the parents may both have the genotype Bb, which gives them black fur. Approximately 25% of their offspring should have the genotype bb, which gives them the phenotype of white fur.
The predicted ratio of offspring in a mating of AAA and AAA would be 100% AAA. Since both parents have the same genotype, all of their offspring will inherit the same genotype.
RrYy. This is because the first parent is homozygous dominant for both traits (R and Y), while the second parent is homozygous recessive for both traits (r and y). Therefore, all offspring will inherit one dominant allele (R and Y) and one recessive allele (r and y) for each trait.
the offspring will have both black and whit feathers.
It depends on the parents' genes. If both parent have a Pp genotype, then the offspring has a 25% chance of having a PP genotype. But if both parents have a PP genotype then its 100%.
If both parents have the same phenotype, but the offspring did not share that phenotype, then it is likely that the parents have a dominant phenotype, but the offspring has a recessive phenotype, which means that the offpring's genotype would be homozygous recessive, and it's parents' genotypes would be heterozygous. For example, the parents may both have the genotype Bb, which gives them black fur. Approximately 25% of their offspring should have the genotype bb, which gives them the phenotype of white fur.
If both parents have the same phenotype, but the offspring did not share that phenotype, then it is likely that the parents have a dominant phenotype, but the offspring has a recessive phenotype, which means that the offpring's genotype would be homozygous recessive, and it's parents' genotypes would be heterozygous. For example, the parents may both have the genotype Bb, which gives them black fur. Approximately 25% of their offspring should have the genotype bb, which gives them the phenotype of white fur.
The genotype of the offspring that had the same phenotype as the parents is rr or wrinkled. The phenotype for the seed shape of both parent plants is round.
The offspring's genotype will be AA. Both parents are homozygous dominant, AA, having only dominant alleles to pass on to their offspring. So each parent can pass on only the dominant allele (A) to its offspring. So the offspring will also be homozygous dominant, AA.
In a heterozygous cross (e.g., Aa x Aa), the possible genotypes of the offspring are AA, Aa, and aa. The probability of having two offspring with the same genotype can be calculated as follows: the probabilities of each genotype are 1/4 for AA, 1/2 for Aa, and 1/4 for aa. Thus, the probability that both offspring have the same genotype is the sum of the probabilities of each genotype occurring twice: (1/4 * 1/4) + (1/2 * 1/2) + (1/4 * 1/4) = 1/16 + 1/4 + 1/16 = 5/16. Therefore, there is a 5/16 chance that both offspring will have the same genotype.
To determine the probability of an offspring mouse being born with the genotype ff ee, you need to know the genotypes of the parent mice. If both parents are heterozygous (Ff Ee), the probability of producing ff offspring is 1/4 and for ee offspring is also 1/4. To find the probability of the combined genotype ff ee, you multiply these probabilities: (1/4) x (1/4) = 1/16. Thus, there is a 1/16 probability that an offspring mouse will have the genotype ff ee, assuming both parents are Ff Ee.
There different genotypes and two different colors Black fur is dominant --> F White fur is recessive --> f The parents are bot Ff (heterozygotes, and because black fur is dominant they have a black fur). If they mate, you get parents: Ff x Ff Offspring: FF Ff Ff ff so 25% will be homozygous for Black fur 2x25=50% will be heterozygous, and have a Black fur and 25% wil be homozygous for White fur. Hence, of their offspring, 75% will have a black fur and 25% will have a white fur
A test cross with a homozygous recessive guinea pig (bb) would reveal the genotype of the black guinea pig. If all offspring are black, then the black guinea pig is most likely homozygous dominant (BB). If both black and white offspring are produced, then the black guinea pig is likely heterozygous (Bb).
No, not always. The offspring can be white, black, black and white or shades of both.
If both parents have the same phenotype, but the offspring did not share that phenotype, then it is likely that the parents have a dominant phenotype, but the offspring has a recessive phenotype, which means that the offpring's genotype would be homozygous recessive, and it's parents' genotypes would be heterozygous. For example, the parents may both have the genotype Bb, which gives them black fur. Approximately 25% of their offspring should have the genotype bb, which gives them the phenotype of white fur.