A=t
c=g
You can predict the base sequence of one strand of DNA if you know the sequence of the other strand because DNA strands are complementary. Adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). This complementary base pairing allows the sequence of one strand to dictate the sequence of the other, enabling accurate predictions of the base sequence.
in DNA, each base pairs up with only one other base
You can predict the base seqences of a DNA molecule if you know what one strand is, because of double Stranded DNA. Each strand matches up with a letter and repeats a pattern throught the entire DNA strand.
You can predict the base sequence of one strand of DNA if you know the sequence of the complementary strand because DNA strands are complementary and follow base-pairing rules (adenine pairs with thymine, and cytosine pairs with guanine). However, if the question implies difficulty in prediction, it may relate to factors such as DNA mutations, structural variations, or the presence of non-canonical base pairing that could complicate straightforward predictions. In typical scenarios, though, knowing one strand allows for the accurate determination of the other.
DNA is made up four nucleotide bases,a pentose sugar and a phosphate. The four nucleotides are adenine, guanine, cytosine and thymine. Due to the nature of these molecules they fall into two groups called purines ( adenine an guanine) and pyrimidines ( cytosine and thymine). The bases have complimentary base pairing causing the double helix shape of DNA. adenine always bonds with thymjine and guanine with cytosine. So you can predict what the base sequence of one strand the other strand will be the opposite base pairing, for example if you know that a strand is AGAACTG the complimentary strand is TCTTGAC.
You can predict the base sequence of one strand of DNA if you know the sequence of the other strand because DNA strands are complementary. Adenine (A) pairs with thymine (T), and cytosine (C) pairs with guanine (G). This complementary base pairing allows the sequence of one strand to dictate the sequence of the other, enabling accurate predictions of the base sequence.
in DNA, each base pairs up with only one other base
You can predict the base seqences of a DNA molecule if you know what one strand is, because of double Stranded DNA. Each strand matches up with a letter and repeats a pattern throught the entire DNA strand.
The order of bases in the second strand of a DNA molecule is complementary to the first strand, following the base pairing rules (A with T, C with G). So, if the first strand has the sequence ATCG, the second strand would have the sequence TAGC.
You can predict the base sequence of one strand of DNA if you know the sequence of the complementary strand because DNA strands are complementary and follow base-pairing rules (adenine pairs with thymine, and cytosine pairs with guanine). However, if the question implies difficulty in prediction, it may relate to factors such as DNA mutations, structural variations, or the presence of non-canonical base pairing that could complicate straightforward predictions. In typical scenarios, though, knowing one strand allows for the accurate determination of the other.
DNA is made up four nucleotide bases,a pentose sugar and a phosphate. The four nucleotides are adenine, guanine, cytosine and thymine. Due to the nature of these molecules they fall into two groups called purines ( adenine an guanine) and pyrimidines ( cytosine and thymine). The bases have complimentary base pairing causing the double helix shape of DNA. adenine always bonds with thymjine and guanine with cytosine. So you can predict what the base sequence of one strand the other strand will be the opposite base pairing, for example if you know that a strand is AGAACTG the complimentary strand is TCTTGAC.
The base sequence CAGACT corresponds to the DNA strand, and it would be complementary to the RNA strand with the sequence GUCUGA. Therefore, the original strand is the DNA strand.
in DNA, each base pairs up with only one other base
A TG CAGATTCTCTAAG
The complementary base sequence of a DNA strand is formed by pairing adenine (A) with thymine (T) and cytosine (C) with guanine (G). For the template strand TTGCACG, the complementary sequence would be AACGTGC.
TGCA
A complimentary DNA sequence is the genetic code on the partner strand that aligns with and corresponds to (matches) the code on the primary strand. Each nucleotide has a match, A matches T and C matches G, therefore the complimentary sequence for ATCGA is TAGCT.