in DNA, each base pairs up with only one other base
You can predict the base seqences of a DNA molecule if you know what one strand is, because of double Stranded DNA. Each strand matches up with a letter and repeats a pattern throught the entire DNA strand.
You can predict the base sequence of one strand of DNA if you know the sequence of the complementary strand because DNA strands are complementary and follow base-pairing rules (adenine pairs with thymine, and cytosine pairs with guanine). However, if the question implies difficulty in prediction, it may relate to factors such as DNA mutations, structural variations, or the presence of non-canonical base pairing that could complicate straightforward predictions. In typical scenarios, though, knowing one strand allows for the accurate determination of the other.
A=t c=g
G=C, G=C, T=A, A= T So, to answer the question: CGGTAAC
in DNA, each base pairs up with only one other base
You can predict the base seqences of a DNA molecule if you know what one strand is, because of double Stranded DNA. Each strand matches up with a letter and repeats a pattern throught the entire DNA strand.
You can predict the base sequence of one strand of DNA if you know the sequence of the complementary strand because DNA strands are complementary and follow base-pairing rules (adenine pairs with thymine, and cytosine pairs with guanine). However, if the question implies difficulty in prediction, it may relate to factors such as DNA mutations, structural variations, or the presence of non-canonical base pairing that could complicate straightforward predictions. In typical scenarios, though, knowing one strand allows for the accurate determination of the other.
The order of bases in the second strand of a DNA molecule is complementary to the first strand, following the base pairing rules (A with T, C with G). So, if the first strand has the sequence ATCG, the second strand would have the sequence TAGC.
A=t c=g
If a strand of DNA has the sequence aagctc, transcription will result in a mRNA molecule with the complementary sequence uucgag. Transcription is the process of creating a mRNA molecule using DNA as a template.
G=C, G=C, T=A, A= T So, to answer the question: CGGTAAC
in DNA, each base pairs up with only one other base
DNA is made up four nucleotide bases,a pentose sugar and a phosphate. The four nucleotides are adenine, guanine, cytosine and thymine. Due to the nature of these molecules they fall into two groups called purines ( adenine an guanine) and pyrimidines ( cytosine and thymine). The bases have complimentary base pairing causing the double helix shape of DNA. adenine always bonds with thymjine and guanine with cytosine. So you can predict what the base sequence of one strand the other strand will be the opposite base pairing, for example if you know that a strand is AGAACTG the complimentary strand is TCTTGAC.
UUG CAU UGC
The DNA molecule is composed of two DNA strands.
tacag
A palindromic DNA sequence is one where the nucleotide sequence reads the same forwards and backwards on both strands. In the double-stranded DNA molecule, the two strands are complementary and run anti-parallel to each other. This means that the palindromic sequence on one strand will have its complementary sequence on the other strand.