UUG CAU UGC
If a strand of DNA has the sequence aagctc, transcription will result in a mRNA molecule with the complementary sequence uucgag. Transcription is the process of creating a mRNA molecule using DNA as a template.
The newly synthesized RNA molecule is complementary to the DNA template strand. It pairs with the template strand through base pairing rules (A with U, T with A, G with C, and C with G) to create an mRNA transcript that corresponds to the DNA sequence.
The nucleotide sequence of the mRNA strand is determined by the DNA template strand during transcription. If the DNA template sequence is, for example, 3'-ATCGTAGC-5', the corresponding mRNA sequence synthesized would be 5'-UAGCAUCG-3'. The mRNA sequence consists of complementary RNA nucleotides, where adenine (A) pairs with uracil (U) and cytosine (C) pairs with guanine (G).
The base sequence of cDNA is complementary to the mRNA molecule from which it is synthesized. This means that the cDNA will have the same sequence as the mRNA, except that thymine in DNA is replaced with uracil in RNA.
To determine the base sequence of a DNA strand from a given mRNA sequence, you need to consider that mRNA is synthesized from the DNA template strand through a process called transcription. The mRNA bases pair with their complementary DNA bases, where adenine (A) pairs with thymine (T), uracil (U) in mRNA pairs with adenine (A) in DNA, cytosine (C) pairs with guanine (G), and guanine (G) pairs with cytosine (C). Therefore, to find the DNA base sequence, you can convert the mRNA sequence to its corresponding DNA sequence by replacing U with A and reversing the order to get the complementary DNA strand.
During transcription, the mRNA strand is synthesized using the template DNA strand, which runs in the 3' to 5' direction. The mRNA is created in the 5' to 3' direction, meaning that RNA polymerase adds complementary RNA nucleotides to the growing strand. For example, if the DNA template strand has a sequence of 3'-ATCGTA-5', the resulting mRNA would have the sequence 5'-UAGCAU-3'.
The mRNA molecule encodes the protein product in the cell for translation. It is a double stranded, base-paired, ribonucleic acid that typically encodes a single gene, or protein, product.
The sense strand of DNA is the strand that has the same sequence as the mRNA that is transcribed from DNA. The antisense strand is the complementary strand of the sense strand, which is used as a template for mRNA synthesis. The mRNA is transcribed from the antisense strand and contains the same sequence as the sense strand.
The sequence of the mRNA transcribed from the DNA gene TTACAGGTCCCA would be complementary to the template strand of the DNA. Since mRNA is synthesized using uracil (U) instead of thymine (T), the corresponding mRNA sequence would be AAUGUCCAGGGU. This sequence reflects the direct transcription of the DNA template, replacing each thymine with uracil.
The complimentary strand of MRNA would be AAUUCCGG.
In the process of transcription, the template strand of DNA (often referred to as the antisense or non-coding strand) is used to produce messenger RNA (mRNA). This strand serves as the guide for RNA polymerase to synthesize the mRNA complementary to it. The other strand, known as the coding or sense strand, has a sequence that matches the mRNA (with uracil replacing thymine). Therefore, if strand A is the template, then mRNA is produced based on strand A.
A single mRNA strand is typically produced but a single strand can make many many copies of the protein encoded on the molecule.