UUG CAU UGC
If a strand of DNA has the sequence aagctc, transcription will result in a mRNA molecule with the complementary sequence uucgag. Transcription is the process of creating a mRNA molecule using DNA as a template.
The newly synthesized RNA molecule is complementary to the DNA template strand. It pairs with the template strand through base pairing rules (A with U, T with A, G with C, and C with G) to create an mRNA transcript that corresponds to the DNA sequence.
The base sequence of cDNA is complementary to the mRNA molecule from which it is synthesized. This means that the cDNA will have the same sequence as the mRNA, except that thymine in DNA is replaced with uracil in RNA.
The sense strand of DNA is the strand that has the same sequence as the mRNA that is transcribed from DNA. The antisense strand is the complementary strand of the sense strand, which is used as a template for mRNA synthesis. The mRNA is transcribed from the antisense strand and contains the same sequence as the sense strand.
The mRNA molecule encodes the protein product in the cell for translation. It is a double stranded, base-paired, ribonucleic acid that typically encodes a single gene, or protein, product.
The sequence of the mRNA transcribed from the DNA gene TTACAGGTCCCA would be complementary to the template strand of the DNA. Since mRNA is synthesized using uracil (U) instead of thymine (T), the corresponding mRNA sequence would be AAUGUCCAGGGU. This sequence reflects the direct transcription of the DNA template, replacing each thymine with uracil.
The complimentary strand of MRNA would be AAUUCCGG.
A single mRNA strand is typically produced but a single strand can make many many copies of the protein encoded on the molecule.
If the tRNA has the sequence UUA, then the mRNA it reads from will have the sequence complementary to UUA, which is AAU. RNA uses the nucleic acid uracil instead of the DNA counterpart, thymine.
After the two ribosomal subunits attach to a strand of mRNA, a tRNA molecule with the amino acid methionine attaches to the start codon, AUG.
DNA is not made into mRNA, it is transcribed by mRNA. The DNA molecule is split into two strands by the enzyme helicase. One strand is the sense strand and the other is the anti-sense strand. Then mRNA nucleotides pair with their complimentary DNA bases on the antisense strand. The enzyme RNA polymerase causes the mRNA nucleotides to bond with one another, forming a strand of mRNA.
mRNA is synthesized within a cell through a process called transcription. During transcription, the DNA in the cell's nucleus is used as a template to create a complementary strand of mRNA. This mRNA strand carries the genetic information from the DNA to the ribosomes in the cytoplasm, where it is used to produce proteins.