Complementary
Transcription is the bridge between DNA and protein synthesis. During transcription, a DNA sequence is copied into a messenger RNA (mRNA) molecule by the enzyme RNA polymerase. This mRNA molecule serves as a template for protein synthesis during translation.
DNA - a self-replicating material which is present in nearly all living organisms as the main constituent of chromosomes. It is the carrier of genetic information.cDNA - a form of DNA artificially synthesized from a messenger RNA template and used in genetic engineering to produce gene clones.
During transcription, a hydrogen bond is formed between the complementary base pairs (A-U or A-T, and G-C) of the DNA template strand and the synthesized RNA nucleotides by RNA polymerase. These bonds help stabilize the formation of the mRNA molecule during transcription.
A molecule consists of (is made up of) one or more atoms.Molecules are made of atoms.
Two strands of DNA are used to make complementary strands of DNA. One original strand serves as a template for the synthesis of a new strand, resulting in a double-stranded DNA molecule with base pairing between the original and newly synthesized strands.
Transcription is the bridge between DNA and protein synthesis. During transcription, a DNA sequence is copied into a messenger RNA (mRNA) molecule by the enzyme RNA polymerase. This mRNA molecule serves as a template for protein synthesis during translation.
DNA - a self-replicating material which is present in nearly all living organisms as the main constituent of chromosomes. It is the carrier of genetic information.cDNA - a form of DNA artificially synthesized from a messenger RNA template and used in genetic engineering to produce gene clones.
During transcription, a hydrogen bond is formed between the complementary base pairs (A-U or A-T, and G-C) of the DNA template strand and the synthesized RNA nucleotides by RNA polymerase. These bonds help stabilize the formation of the mRNA molecule during transcription.
The outline is the bare-bones "template" that's used to write the essay.
The template strand is used as a guide to create mRNA during transcription. The mRNA is complementary to the template strand and carries the genetic information from the DNA to the ribosome for protein synthesis.
Boner
A molecule consists of (is made up of) one or more atoms.Molecules are made of atoms.
The relationship between bond polarity and molecular polarity is that the overall polarity of a molecule is determined by the polarity of its individual bonds. If a molecule has polar bonds that are not symmetrical, the molecule will be polar overall. If a molecule has nonpolar bonds or symmetrical polar bonds that cancel each other out, the molecule will be nonpolar overall.
Two strands of DNA are used to make complementary strands of DNA. One original strand serves as a template for the synthesis of a new strand, resulting in a double-stranded DNA molecule with base pairing between the original and newly synthesized strands.
The relationship between bond polarity and molecular polarity in chemical compounds is that the overall polarity of a molecule is determined by the polarity of its individual bonds. If a molecule has polar bonds that are not symmetrical, the molecule will be polar overall. Conversely, if a molecule has nonpolar bonds or symmetrical polar bonds that cancel each other out, the molecule will be nonpolar.
The intermediate molecule formed between DNA and protein is mRNA (messenger RNA). The process in which the DNA sequence is copied to an RNA sequence is called transcription. The process in which the mRNA template is read to produce protein is called translation (protein synthesis)
Molecular polarity is determined by the overall arrangement of polar bonds within a molecule. If a molecule has polar bonds that are arranged symmetrically, the molecule is nonpolar. However, if the polar bonds are arranged asymmetrically, the molecule is polar. Therefore, the relationship between molecular polarity and bond polarity is that the presence and arrangement of polar bonds within a molecule determine its overall polarity.