one mole contains 6.022 x 10^23 atoms. so multiply by 32
To find the number of moles in 5 grams of sulfur, you need to divide the mass of the sample by the molar mass of sulfur. The molar mass of sulfur is approximately 32.06 g/mol. Therefore, 5 grams of sulfur would be equal to 0.156 moles.
H2O: 44g x 1 mol/18 g = 2.44 moles and 2.44 moles x 6.02x10^23 atoms/mole = 1.5x10^24 atomsS-32: 44g x 1mol/32g = 1.375 moles and 1.375 moles x 6.02x10^23 atoms/mole = 8.3x1^23 atomsO-16: 44g x 1 mol/16g = 0.6875 moles and 0.6875 moles x 6.02x10^23 atoms/mol = 4.2x10^23 atomsH-1: 44g x 1mol/1g = 44 moles and 44 moles x 6.02x10^23 atoms/mole = 2.6x10^25 atoms
To find the number of moles of oxygen atoms in a 254 g sample of carbon dioxide (CO₂), first calculate the molar mass of CO₂, which is approximately 44 g/mol (12 g/mol for carbon and 32 g/mol for two oxygen atoms). The number of moles of CO₂ in the sample is 254 g ÷ 44 g/mol = about 5.77 moles. Since each molecule of CO₂ contains two oxygen atoms, the total number of moles of oxygen atoms is 5.77 moles × 2 = approximately 11.54 moles of O atoms.
To find the mass of copper containing the same number of atoms as in 3.2 grams of sulfur, we first determine the number of moles of sulfur. Sulfur has a molar mass of approximately 32 g/mol, so 3.2 grams corresponds to 0.1 moles of sulfur. Since copper (Cu) has a molar mass of about 63.5 g/mol, the mass of copper that has the same number of moles (0.1 moles) is calculated as 0.1 moles × 63.5 g/mol = 6.35 grams. Therefore, the mass of copper is 6.35 grams.
To find the number of atoms in 16 g of oxygen (O), we first determine the number of moles: 16 g of O divided by its molar mass (approximately 16 g/mol) gives 1 mole of O, which contains about 6.022 x 10²³ atoms. For 8 g of sulfur (S), the molar mass is approximately 32 g/mol, so 8 g corresponds to 0.25 moles, equating to about 1.505 x 10²³ atoms of S. In total, there are approximately 7.527 x 10²³ atoms from both elements combined.
To find the number of moles in 5 grams of sulfur, you need to divide the mass of the sample by the molar mass of sulfur. The molar mass of sulfur is approximately 32.06 g/mol. Therefore, 5 grams of sulfur would be equal to 0.156 moles.
Remember the Equation Moles = mass(g) / Ar (Relative Atomic Mass) Algebraically rearranging mass(g) = moles X Ar We have 1 mole and from the Periodic Table the Atomic Mass of Sulphur is '32'. Hence substituting mass(g) = 1 moles X 32 mass = 32 g .
Since 14 (4+10) moles of P4O10 contains 4 moles of Phosphorus, 8 moles of P4O10 will contain :: (8 x 4)/14 = 2.286 moles of Phosphorus
The gram-atomic mass of sulphur is 32 and that of oxygen is 16, to two significant digits. Therefore, the mass of oxygen with the same number of atoms as 64 grams of sulphur can be found from the proportion m/64 = 16/32, or m = 32 grams.
H2O: 44g x 1 mol/18 g = 2.44 moles and 2.44 moles x 6.02x10^23 atoms/mole = 1.5x10^24 atomsS-32: 44g x 1mol/32g = 1.375 moles and 1.375 moles x 6.02x10^23 atoms/mole = 8.3x1^23 atomsO-16: 44g x 1 mol/16g = 0.6875 moles and 0.6875 moles x 6.02x10^23 atoms/mol = 4.2x10^23 atomsH-1: 44g x 1mol/1g = 44 moles and 44 moles x 6.02x10^23 atoms/mole = 2.6x10^25 atoms
To find the number of moles of oxygen atoms in a 254 g sample of carbon dioxide (CO₂), first calculate the molar mass of CO₂, which is approximately 44 g/mol (12 g/mol for carbon and 32 g/mol for two oxygen atoms). The number of moles of CO₂ in the sample is 254 g ÷ 44 g/mol = about 5.77 moles. Since each molecule of CO₂ contains two oxygen atoms, the total number of moles of oxygen atoms is 5.77 moles × 2 = approximately 11.54 moles of O atoms.
2(6.02 x 10^23) atoms
The molar mass of sulfur is approximately 32 grams per mole. Therefore, 100 grams of sulfur would contain approximately 3 moles of sulfur atoms (100 grams / 32 grams/mole). To find the number of atoms, you would then multiply the number of moles by Avogadro's number (6.022 x 10^23 atoms/mole) to get the total number of sulfur atoms in 100 grams.
In 2 moles of hydrochloric acid (HCl), there are 2 moles of hydrogen atoms. Since each molecule of HCl contains one hydrogen atom, multiplying the moles of HCl by Avogadro's number (6.022 x 10^23) gives the number of hydrogen atoms. Therefore, there are 1.204 x 10^24 hydrogen atoms in 2 moles of HCl.
To determine the number of atoms in 8g of sulfur (S), you would first calculate the number of moles using the molar mass of sulfur (32 g/mol). Then, using Avogadro's number (6.022 x 10^23), you can convert the moles to atoms.
To find the mass of copper containing the same number of atoms as in 3.2 grams of sulfur, we first determine the number of moles of sulfur. Sulfur has a molar mass of approximately 32 g/mol, so 3.2 grams corresponds to 0.1 moles of sulfur. Since copper (Cu) has a molar mass of about 63.5 g/mol, the mass of copper that has the same number of moles (0.1 moles) is calculated as 0.1 moles × 63.5 g/mol = 6.35 grams. Therefore, the mass of copper is 6.35 grams.
To calculate the number of atoms in 32g of sulfur, you first need to determine the number of moles of sulfur in 32g. Then, use Avogadro's number (6.022 x 10^23 atoms/mol) to convert moles to atoms. The final result will provide the number of sulfur atoms in 32g of sulfur.