800 g oxygen are needed.
the required equation is HgCl2+4KI>>2KCl+K2HgI4. according to stoichiometric calculations 4 moles of KI gives 1 mole of k2HgI4 THEREFORE 0.4 moles of K2HgI4 requires----- ? 0.4 moles x 4 moles/1 mole=1.6 moles therefore 1.6 moles of KI is required to produce 0.4 moles of K2HgI4
The answer is 97,66 moles.
Do you mean this reaction? C6H12O6 + 6O2 -> 6CO2 + 6H2O 6 moles oxygen required. --------------------------------
Given the balanced equation Kr + 3F2 --> KrF6 In order to find how many moles of F2 are needed to produce 3.0 moles of KrF6, we must convert from moles to moles (mol --> mol conversion). 3.0 mol KrF6 * 3 molecules F2 = 9.0 mol F2 --------- 1 molecule F2
800 g oxygen are needed.
the required equation is HgCl2+4KI>>2KCl+K2HgI4. according to stoichiometric calculations 4 moles of KI gives 1 mole of k2HgI4 THEREFORE 0.4 moles of K2HgI4 requires----- ? 0.4 moles x 4 moles/1 mole=1.6 moles therefore 1.6 moles of KI is required to produce 0.4 moles of K2HgI4
Three moles of nitrogen are required to produce 2 moles of ammonia according to the balanced chemical reaction for ammonia synthesis. Therefore, 27 moles of nitrogen are required to produce 18 moles of ammonia.
This is not a common reaction at standard temperature and pressure.
N2 + 3H2 -> 2NH3 The stoichiometric equation (or balanced equation) for the formation of ammonia from this we can read off the mole ratio between hydrogen and ammonia; 3M H2 needed to produce 2M NH3 times each by 9 (so the ratio remains the same and 18M NH3 is formed) 27M H2 needed to produce 18M NH3
Six moles of HCl will be required: Each mole of chlorine contains two chlorine atoms, but each mole of HCl contains only one chlorine atom and the other reagent noted contains no chlorine atoms.
To produce 1 mole of chloroform, you need 3 moles of chlorine. So, to produce 1.5 moles of chloroform, you would need 4.5 moles of chlorine. Converting moles to grams by using the molar mass of chlorine (35.5 g/mol) gives you 160.5 grams of chlorine required.
The answer is 97,66 moles.
Do you mean this reaction? C6H12O6 + 6O2 -> 6CO2 + 6H2O 6 moles oxygen required. --------------------------------
Given the balanced equation Kr + 3F2 --> KrF6 In order to find how many moles of F2 are needed to produce 3.0 moles of KrF6, we must convert from moles to moles (mol --> mol conversion). 3.0 mol KrF6 * 3 molecules F2 = 9.0 mol F2 --------- 1 molecule F2
To determine the moles of LiF required, use the formula: moles = molarity (M) * volume (L). Given a 7 M solution with a volume of vol L, the moles of LiF needed would be 7 * vol.
3.2 moles of water (H2O)