800 g oxygen are needed.
We need 3 moles of potassium perchlorate.
Four moles of potassium chlorate are needed.
Since acetylene (C2H2) has a stoichiometry of 2 moles of acetylene to produce 2 moles of CO2, three moles of acetylene would produce 3 moles of CO2. The reaction with excess oxygen ensures that all the acetylene is fully converted to CO2.
To find the moles of cesium chlorate needed to produce 2.7 moles of oxygen gas, use the balanced chemical equation for the decomposition of cesium chlorate: 2CsClO3 -> 2CsCl + 3O2 From the equation, it shows that 2 moles of cesium chlorate produce 3 moles of oxygen gas. Therefore, you will need (2/3) * 2.7 = 1.8 moles of cesium chlorate to produce 2.7 moles of oxygen gas.
2KClO3==>2KCl+3O2 is the equation. so you need 4 moles of KClO3.
2KClO3 + heat -> 2KCl + 3O2 14 moles KClO3 (3 mole O2/2 mole KClO3) = 21 moles oxygen made This is a common industrial method of producing oxygen.
The chemical reactin is:2 KClO3 = 2 KCl + 3 O24 moles of potassium chlorate produce 6 moles oxygen.
12 moles KClO3 (3 moles O/1 mole KClO3) = 36 moles of oxygen.
2KClO3 --> 2KCl + 3O2For every 3 moles of oxygen gas produced, 2 moles of potassium chlorate are used.6 moles O2 * (2 moles KClO3 reacted / 3 moles O2 produced) = 4 moles KClO3
2 KClO3 ------ 2KCl + 3O2 so 2 moles of KClO3 produces two mole of KCl. Therefore 0.440 moles of potassium chlorate will produce 0.44 moles of KCl - potassium chloride.
For the decomposition of potassium chlorate, the molar ratio between potassium chlorate (KClO3) and oxygen (O2) is 2:3. Therefore, to produce 15 moles of oxygen, 10 moles of potassium chlorate are needed. (15 moles O2) x (2 moles KClO3 / 3 moles O2) = 10 moles KClO3.
2 grams of Oxygen can be obtained from 5 grams of KClO3 (only if the "CL" means "Cl", which is Chlorine! Remember that only the first letter of the atomic symbol is capitalized.)
For every mole of potassium chlorate that decomposes, three moles of oxygen are produced. Therefore, if 7.5 moles of potassium chlorate decompose, 22.5 moles of oxygen would be produced (7.5 moles x 3).
2 to 3, because of the balanced equation:2 KClO3 --> 2 KCl + 3 O2
The equation that describes this process is as follows: 2KClO3 ---> 2KCl + 3O2 For every 2 moles of reactants consumed 3 moles of oxygen gas are produced. 3 mol O2 / 2 mol KClO3 = x mol O2 / 12.3 mol KClO3 x = 12.3 mol x 3 mol / 2 mol = 18.45 mol Therefore, 18.5 mol (3 significant figures) of oxygen are produced by the decomposition of 12.3 mol of potassium chlorate
800 g oxygen are needed.