answersLogoWhite

0

The time between P-waves (primary waves) and S-waves (secondary waves) varies depending on the distance from the seismic event. Generally, for an earthquake, the time difference can range from a few seconds to several minutes, with P-waves arriving first, followed by S-waves. The greater the distance from the epicenter, the longer the interval between the two types of waves. Seismologists often use this time difference to determine the location of the earthquake.

User Avatar

AnswerBot

1mo ago

What else can I help you with?

Continue Learning about Natural Sciences

Is it true that the closer an earthquake the greater the time difference between the arrival of P-waves and the arrival of S-waves?

Yes, that is correct. The time difference between the arrival of P-waves and S-waves increases as the earthquake epicenter gets closer to the seismograph. P-waves are faster, so they arrive first, followed by the slower S-waves.


How are p-and s-waves arrival time differences related to the distance of a city away from an epicenter?

The arrival time difference between p- and s-waves increases with distance from the epicenter. p-waves travel faster and arrive first, followed by s-waves which are slower. The farther a city is from the epicenter, the greater the time lag between the arrival of the two waves.


How would the difference in arrival times of the P-waves and S-waves at station 4 compare with the difference in arrival times of these waves at station 3?

The arrival time difference between P-waves and S-waves at station 4 would be shorter than at station 3. This is because the further away a seismic station is from the earthquake epicenter, the shorter the time difference between the arrival of P-waves and S-waves. This is due to the faster travel speed of P-waves compared to S-waves.


What happens to the time difference between primary and secondary waves as the distance traveled gets longer?

The time difference between primary (P) and secondary (S) waves becomes larger as the distance traveled by the waves increases. This is because P-waves travel faster than S-waves, so the time delay between their arrivals at a seismometer station increases with distance.


What is the difference between s and p wave?

As P-waves travel at a higher velocity than S-waves they arrive at a seismometer station before the S-waves. The difference between their arrival time can be used to calculate the distance from the seismometer station to the epicentre.

Related Questions

Is it true that the closer an earthquake the greater the time difference between the arrival of P-waves and the arrival of S-waves?

Yes, that is correct. The time difference between the arrival of P-waves and S-waves increases as the earthquake epicenter gets closer to the seismograph. P-waves are faster, so they arrive first, followed by the slower S-waves.


Is it true or false that the closer an earthquake the greater the time between the arrival of P waves and the arrival of S waves?

False. The closer an earthquake is, the shorter the time difference between the arrival of P waves and S waves. P waves travel faster than S waves, so the time interval decreases as the distance to the earthquake epicenter decreases.


What is the difference between p and s waves arrival time?

As P-waves travel at a higher velocity than S-waves they arrive at a seismometer station before the S-waves. The difference between their arrival time can be used to calculate the distance from the seismometer station to the epicentre.


Why does the time between the arrival of the p waves and the s waves become greater and greater as you travel farther away from the epicenter?

The time difference between P waves and S waves increases with distance from the epicenter because P waves, which are primary waves, travel faster than S waves, which are secondary waves. As seismic waves propagate through the Earth, the greater the distance from the epicenter, the longer it takes for the slower S waves to arrive after the faster P waves. This results in a growing time interval between their arrivals, allowing seismologists to determine the distance to the epicenter based on this time difference.


What happens to the distance in arrival times between P waves and S waves as the distance for the earthquake increases?

As the distance from the earthquake to the seismograph station increases, the time interval between the arrival of P waves and S waves also increases. This is because S waves travel slower than P waves, so the further distance allows more time for the S waves to catch up and be recorded after the P waves.


How are p-and s-waves arrival time differences related to the distance of a city away from an epicenter?

The arrival time difference between p- and s-waves increases with distance from the epicenter. p-waves travel faster and arrive first, followed by s-waves which are slower. The farther a city is from the epicenter, the greater the time lag between the arrival of the two waves.


What time between the arrival of p and s waves?

lga ietm


Does the lag time get shorter or longer the further you get from the epicenter?

The lag time between the arrival of P-waves and S-waves generally gets longer the further you are from the earthquake's epicenter. P-waves travel faster than S-waves, so the time difference between their arrivals increases with distance.


How would the difference in arrival times of the P-waves and S-waves at station 4 compare with the difference in arrival times of these waves at station 3?

The arrival time difference between P-waves and S-waves at station 4 would be shorter than at station 3. This is because the further away a seismic station is from the earthquake epicenter, the shorter the time difference between the arrival of P-waves and S-waves. This is due to the faster travel speed of P-waves compared to S-waves.


What are the similarities between P-waves and S-waves?

They are waves.


What happens to the time difference between primary and secondary waves as the distance traveled gets longer?

The time difference between primary (P) and secondary (S) waves becomes larger as the distance traveled by the waves increases. This is because P-waves travel faster than S-waves, so the time delay between their arrivals at a seismometer station increases with distance.


What property that is different for p and s waves provides a method for locating the epiccenter of an earthquake?

P-waves (primary waves) are compressional waves that travel faster than S-waves (secondary waves), which are shear waves. This difference in speed allows seismologists to determine the epicenter of an earthquake by analyzing the time difference between the arrival of these two types of waves at seismograph stations. By measuring the time interval between the arrivals of P-waves and S-waves, the distance to the epicenter can be calculated, enabling the pinpointing of its location.