Calcium....
well check out papuyaar.com it should help
The effect of a neurotransmitter is determined by the type of receptors it binds to on the postsynaptic neuron. If the neurotransmitter activates ion channels that allow positive ions to flow into the neuron, it typically has an excitatory effect, leading to depolarization. Conversely, if it opens channels for negative ions or closes channels for positive ions, it results in hyperpolarization and an inhibitory effect. Thus, the same neurotransmitter can have different effects depending on the receptor type and the ions involved.
A neurotransmitter that allows sodium ions to leak into a postsynaptic neuron causes excitatory postsynaptic potentials. The neurotransmitter that is not synthesized in advance and packaged into synaptic vesicles is nitric oxide.
Calcium ions are responsible for triggering the fusion of neurotransmitter vesicles with the axon's membrane during the conduction of a nerve impulse. The influx of calcium ions into the neuron's terminal triggers the release of neurotransmitters into the synaptic cleft.
Calcium ions (Ca²⁺) play a crucial role in intracellular signaling. They act as secondary messengers in various signaling pathways, facilitating processes such as muscle contraction, neurotransmitter release, and cell proliferation. Changes in intracellular calcium concentrations can trigger specific cellular responses, making them essential for numerous physiological functions.
Calcium ions trigger the release of neurotransmitter at the presynaptic membrane. When an action potential reaches the presynaptic terminal, it causes voltage-gated calcium channels to open, allowing calcium ions to enter the cell. The influx of calcium ions triggers the fusion of synaptic vesicles with the presynaptic membrane, leading to the release of neurotransmitter into the synaptic cleft.
The ion that enters the axon nerve terminal to trigger neurotransmitter release is calcium (Ca2+). When an action potential reaches the nerve terminal, voltage-gated calcium channels open, allowing calcium ions to flow into the cell and initiate the process of exocytosis of neurotransmitter-containing vesicles.
well check out papuyaar.com it should help
The effect of a neurotransmitter is determined by the type of receptors it binds to on the postsynaptic neuron. If the neurotransmitter activates ion channels that allow positive ions to flow into the neuron, it typically has an excitatory effect, leading to depolarization. Conversely, if it opens channels for negative ions or closes channels for positive ions, it results in hyperpolarization and an inhibitory effect. Thus, the same neurotransmitter can have different effects depending on the receptor type and the ions involved.
Calcium ions
When calcium ions enter the synaptic terminal, they bind to proteins that trigger the release of neurotransmitters into the synaptic cleft. This process is essential for communication between neurons and is a key step in signal transmission within the nervous system.
Only calcium ion channels to pass through it.
Synapses. Net flow of charged ions ("impulses") in neuronal cells trigger additional ion flow (ionotropic signaling) or neurotransmitter release (metabotropic signaling) to both neuronal and non-neuronal cell types ("the body") at junctions called synapses.
The combining of the neurotransmitter with the muscle membrane receptors causes the membrane to become permeable to sodium ions and depolarization of the membrane. This depolarization triggers an action potential that leads to muscle contraction.
Calcium ions enter the presynaptic neuron resulting in the release of neurotransmitter from the per-synaptic membrane. The neurotransmitter diffuses across the synaptic cleft, fusing with the receptors of the post-synaptic membrane. This changes the sodium channels to open and sodium ions will to flow into the post-synaptic neuron, depolarizing the post-synaptic membrane. This initiates an action potential. After the post-synaptic neuron has been affected, the neurotransmitter is removed by a type of enzyme called cholinesterase. The inactivated neurotransmitter then returns to the pre-synaptic neuron.
No. Its a cellular membrane trigger that causes cells to transport sugar across the membrane ( via transport proteins).
A neurotransmitter that allows sodium ions to leak into a postsynaptic neuron causes excitatory postsynaptic potentials. The neurotransmitter that is not synthesized in advance and packaged into synaptic vesicles is nitric oxide.