Sirius B is a white dwarf. So it is low mass compared to other stellar remnants.
The Sun is a medium mass star in main sequence.
Juvenile star is typically classified as a low mass star, as it is in the early stage of its life cycle. These stars have a mass similar to that of the Sun or less. They are characterized by their long lifespan and relatively stable nature.
High, typically 10 to 70 times (or more) the mass of our own sun.
White dwarf stage. Its shrinks to a lot extent in this stage. Edit: A high mass star is usually one that becomes a supergiant then a supernova. Eventually this should leave either a neutron star or a black hole, depending on the mass of the star. The previous answer is for low mass stars.
A low to medium-mass star eventually evolves into a red giant as it runs out of fuel in its core. After shedding its outer layers, the star will collapse into a white dwarf, which is the end stage of its life cycle.
It is, but at twice our suns mass, Sirius A is on the limit, of being an intimidate mass star. Sirius A will have a life cycle similar to that of our own star which is a low mass star, but burns hotter. Sirius B is a companion white dwarf star with a mass of around the same as our sun. Previously, it was thought to have been a star with a mass of around 5 times that of our sun, burning out more quickly than Sirius A.
High mass.
High mass.
white dwarf
The Sun is a medium mass star in main sequence.
A low mass star will become a white dwarf star, eventually this will cool to become a black dwarf. A high mass star (at least 8 times the mass of our Sun) will form a neutron star or a black hole, after a supernova event.
There are more low mass stars. this is for two reasons:- # the star forming process generates more low mass stars # High mass stars burn out very quickly and explode as supernovas and thus over time there are less and less of them.
The sun is a low mass sequence star. It is classified as a G-type main-sequence star, which means it is in the middle of its stellar evolution and will remain stable for billions of years.
In a newly formed star cluster stars with low masses must greaty out number stars with high masses. High mass stars are rare and low mass stars are extremely common.
Juvenile star is typically classified as a low mass star, as it is in the early stage of its life cycle. These stars have a mass similar to that of the Sun or less. They are characterized by their long lifespan and relatively stable nature.
a low mass protostar is the begining formation of a low mass star. a low mass protostar is formed by a nebula (stellar nursery), like a cloud in space, where all stares come from. the definition of protostar is: a collection of gas, and dust who`s gravitational pull is causing it to collapse on itself & form a star. a LOW MASS protostar just has a LOWER MASS then a HIGH MASS protostar. Your Welcome:)
High, typically 10 to 70 times (or more) the mass of our own sun.