answersLogoWhite

0

Yes, while nature will always try to place electrons in their lowest energy configuration, electrons can temporarily occupy higher energy states. When they fall back to the lowest energy state, the difference in energy is released as light - "a photon". Different colors of light reflect differing energy state jumps made by electrons.

User Avatar

Wiki User

10y ago

What else can I help you with?

Continue Learning about Natural Sciences

What is the difference between excited hydrogen atom and any other atom?

Hydrogen atom = 1 proton 1 electron Hydrogen's 1 electron occupies the lowest energy level, 1s orbital. The atom is therefore in its "ground state". When a photon of correct frequency "collides" with a electron in hydrogen's 1s orbital the energy contained in the photon is transferred to the electron. The electron then gets added energy, so it is at a higher energy state. When it reaches this higher energy state the electron jumps to the next energy level and there it starts its new orbit. Hydrogen atom is now "excited" For any other atoms it is the same thing because all atoms can undergo excitation. The only difference between hydrogen's 1 electron and other atom's many electrons is WHICH ELECTRON will be "excited"


When you say an electron is in its ground state what does that mean?

when something is in the ground^No. That is totally incorrect.Basically, a ground state electron is when the atom/element is not being surged through with heat or electricity. Basically, it's the atom's normal electron configuration. So NA [Sodium]'s ground state would be shown as : 1s2, 2s2, 2p6, 3s1.The opposite is when it's in it's excited state. You can remember tell when an atom is in it's excited state when in the electron configuration, there is a huge jump, like 1s2,2s2,2p5, 3s2. This might have happened due to being exposed to heat and or electricity.In other words, ground state=normal, excited is, well, excited. XD


Which electron pair has the lowest electron electron repulsive forces?

Two bonding pairs of electrons repel each other the least. The order of electron electron repulsive forces is: lp-lp > bp-lp > bp-bp (bp = bonding pair) (lp = lone pair)


What is the potential energy of an electron?

The potential energy of the electron is different for every situation, and is a function of the attractive and repulsive forces of nearby positive and negative charges respectively (protons and other electrons). Finding the potential energy for an electron with more than one other particle nearby is extremely complicated!


What cause electron excitation?

Electron excitation occurs when an electron absorbs energy, typically through interactions with photons or collisions with other particles. This absorbed energy can elevate the electron to a higher energy level within an atom or molecule.

Related Questions

What is the natural thing for the electron to do?

It is rather difficult to answer this question without some sort of context. However, in general terms, I would say that an electron will always occupy the lowest possible energy state. If one is considering a single atom, then an electron will always occupy the lowest energy orbital (for a full list of orbital energies see the Wikipedia article "electronic configuration"). However, if other atoms are present then the electron will not necessarily occupy the lowest energy orbital. For example, in the formation of sulfur hexafluoride electrons are promoted from the 3s and 3p sub shells to the 3d sub shell, whilst this does require energy, the energy released in bonding with fluorine more than compensates for this. I hope this answers your question


What is energy of electron when it is closest to the nucleus?

The energy level closest to the nucleus is the 1s orbital and can hold 2 electrons as do all s orbitals. Every electron orbital has a distinct shape and number. The 1s orbital has the same shape the 2s orbital and the 3s orbital and so forth. There are other orbital shapes such as p, d, and f. Regardless of the number or level of the orbital, all p orbitals are the same shape and all d orbitals are the same shape. Orbitals differ in distance from the nucleus and the distance is indicated by the number before the orbital shape.


What is the difference between excited hydrogen atom and any other atom?

Hydrogen atom = 1 proton 1 electron Hydrogen's 1 electron occupies the lowest energy level, 1s orbital. The atom is therefore in its "ground state". When a photon of correct frequency "collides" with a electron in hydrogen's 1s orbital the energy contained in the photon is transferred to the electron. The electron then gets added energy, so it is at a higher energy state. When it reaches this higher energy state the electron jumps to the next energy level and there it starts its new orbit. Hydrogen atom is now "excited" For any other atoms it is the same thing because all atoms can undergo excitation. The only difference between hydrogen's 1 electron and other atom's many electrons is WHICH ELECTRON will be "excited"


When you say an electron is in its ground state what does that mean?

when something is in the ground^No. That is totally incorrect.Basically, a ground state electron is when the atom/element is not being surged through with heat or electricity. Basically, it's the atom's normal electron configuration. So NA [Sodium]'s ground state would be shown as : 1s2, 2s2, 2p6, 3s1.The opposite is when it's in it's excited state. You can remember tell when an atom is in it's excited state when in the electron configuration, there is a huge jump, like 1s2,2s2,2p5, 3s2. This might have happened due to being exposed to heat and or electricity.In other words, ground state=normal, excited is, well, excited. XD


Which electron pair has the lowest electron electron repulsive forces?

Two bonding pairs of electrons repel each other the least. The order of electron electron repulsive forces is: lp-lp > bp-lp > bp-bp (bp = bonding pair) (lp = lone pair)


What are the element within any giving periodic table would always have the lowest first ionization energy?

Elements in the alkali metal group (Group 1) have the lowest first ionization energy within any periodic table. This is because they have a single electron in their outermost shell, which is easier to remove compared to other elements. Sodium and potassium are examples of alkali metals.


What type of energy wave is lowest in energy?

Red, because it has the lowest frequency in visible light


What is the potential energy of an electron?

The potential energy of the electron is different for every situation, and is a function of the attractive and repulsive forces of nearby positive and negative charges respectively (protons and other electrons). Finding the potential energy for an electron with more than one other particle nearby is extremely complicated!


What cause electron excitation?

Electron excitation occurs when an electron absorbs energy, typically through interactions with photons or collisions with other particles. This absorbed energy can elevate the electron to a higher energy level within an atom or molecule.


When sunlight excites electrons how do the electrons change?

Depending on the energy (frequency) of the specific photon hitting the electron, one of three events happens: nothing, the electron is excited, or the electron leaves the atom. If the energy of the photon very high, the electron can absorb the energy and escape the nucleus' pull. This is called ionization. If the energy of the photon lines up with the energy spacing in the atoms energy levels, the electron will move to a higher energy state, becoming excited. The electron then returns to its original energy level, releasing the energy as light. If the energy of the photon does not fall into one of these categories, the electron does not interact with it. In terms of actually changing the electron, it only changes in energy, not any other property.


Does chlorine have a high electron affinity or a low ionization energy?

Chlorine has a high electron affinity due to its tendency to gain an electron to achieve a stable electron configuration. It also has a relatively low ionization energy, meaning it takes less energy to remove an electron from a chlorine atom compared to other elements.


What is the lowest quality form of energy that is released in energy conversions?

Heat energy is often considered the lowest quality form of energy that is released in energy conversions, as it is typically harder to convert back into other forms of energy with high efficiency.