Let do some easy mat.
Load is 2.2 KW. 220 heater uses 10A (220X10 = 2200 W = 2.2 KW) 110 heaters use 22A (10X22 = 2200 W = 2.2 KW). Electricity companies charge per Kilowatt, so, theoretically, you pay the same.
-------
You pay for the energy you use, and that is measured in kilowatt-hours. So if you have a 2 kW heater it doesn't matter about the voltage - provided the heater is run at its correct voltage as marked on the rear plate. A 2 kW heater uses 2 units (kilowatt-hours) for each hour it is switched on, which costs about £0.30 or $0.30.
To calculate the breaker size for a 1500-watt 120-volt heater, use the formula: Breaker size = Power (Watts) / Volts. In this case, 1500 watts / 120 volts = 12.5 amps. Therefore, you would need a 15-amp breaker for a 1500-watt 120-volt heater to allow for a safety margin.
To find the current in amps that a 750 watt, 120 volt heater draws, you can use the formula: Amps = Watts / Volts. So, 750 watts divided by 120 volts equals 6.25 amps. Therefore, the heater draws approximately 6.25 amps.
An electric baseboard heater usually requires a dedicated 240-volt circuit with a double-pole thermostat. The wiring involves connecting the heater to the power supply by matching the colors of the wires (black to black, white to white, and green/bare to ground). It's important to follow the manufacturer's instructions and all applicable electrical codes when installing the heater.
For a 2500 watt water heater operating at 120 volts, you would need a 20 amp breaker. This ensures the breaker can handle the load without tripping.
If V is the rated voltage of the equipment, and Vs is voltage of the supply, we have this approximate equation: Vs = 2 V. That is enough to wreck the equipment and/or blow the fuse.120 volt appliance on 240 voltsThis senerio will use an electric baseboard heater but the results will be the same for any electrical appliance.The heater will operate over its given specified wattage. A 120 volt heater run off of 240 volt will have an output increase. Ohms law stated that current is directly proportional to the applied voltage and inversely proportional to the resistance of the circuit. A 240 volt heater can be run off of 120 volts but the wattage will be reduced.For example if an ordinary 1000 watt baseboard heater's supply is 120 volts, the current of the heater will be, I = W/E 1000/120 = 8.3 amps.The resistance of the heater is R = W/I (squared) =1000/8.3 x 8.3 (69) = 14.5 ohms.Applying 240 volts on the same heater whose resistance is 14.5 ohms results in a new heater wattage rating. W = E (squared)/R = 240 x 240 (57600)/14.5 = 3972 watts.This is 2972 watts, almost 300%, higher than the manufacturer's designed safety rating.The amperage drawn by connecting a 120 volt, 1000 watt heater to a 240 volt source will be, I = W/E = 3972/120 = 33 amps.W = watts, I = amperage, R = resistance in ohms and E = voltage.
To calculate the breaker size for a 1500-watt 120-volt heater, use the formula: Breaker size = Power (Watts) / Volts. In this case, 1500 watts / 120 volts = 12.5 amps. Therefore, you would need a 15-amp breaker for a 1500-watt 120-volt heater to allow for a safety margin.
Yes, a 1500 watt heater operating on 120 volts has an amperage of A = W/V. Amps = Watts/Volts = 1500/120 = 12.5 amps. It is not a recommended practice to do so.
An electric baseboard heater usually requires a dedicated 240-volt circuit with a double-pole thermostat. The wiring involves connecting the heater to the power supply by matching the colors of the wires (black to black, white to white, and green/bare to ground). It's important to follow the manufacturer's instructions and all applicable electrical codes when installing the heater.
For a 2500 watt water heater operating at 120 volts, you would need a 20 amp breaker. This ensures the breaker can handle the load without tripping.
If V is the rated voltage of the equipment, and Vs is voltage of the supply, we have this approximate equation: Vs = 2 V. That is enough to wreck the equipment and/or blow the fuse.120 volt appliance on 240 voltsThis senerio will use an electric baseboard heater but the results will be the same for any electrical appliance.The heater will operate over its given specified wattage. A 120 volt heater run off of 240 volt will have an output increase. Ohms law stated that current is directly proportional to the applied voltage and inversely proportional to the resistance of the circuit. A 240 volt heater can be run off of 120 volts but the wattage will be reduced.For example if an ordinary 1000 watt baseboard heater's supply is 120 volts, the current of the heater will be, I = W/E 1000/120 = 8.3 amps.The resistance of the heater is R = W/I (squared) =1000/8.3 x 8.3 (69) = 14.5 ohms.Applying 240 volts on the same heater whose resistance is 14.5 ohms results in a new heater wattage rating. W = E (squared)/R = 240 x 240 (57600)/14.5 = 3972 watts.This is 2972 watts, almost 300%, higher than the manufacturer's designed safety rating.The amperage drawn by connecting a 120 volt, 1000 watt heater to a 240 volt source will be, I = W/E = 3972/120 = 33 amps.W = watts, I = amperage, R = resistance in ohms and E = voltage.
Each baseboard heater will draw a little over 4 amps at 120 volts or 2 Amps at 240 volts. The total number of baseboards on a circuit will draw the sum of these amps. Keep the load under 80% of the amperage rating of the breaker.
You don't. The heater will operate over its given specified wattage. A 120 volt heater run off of 240 volt will have an output increase. Ohms law stated that current is directly proportional to the applied voltage and inversely proportional to the resistance of the circuit. A 240 volt heater can be run off of 120 volts but the wattage will be reduced. For example if an ordinary 1000 watt baseboard heater's supply is 120 volts, the current of the heater will be, I = W/E 1000/120 = 8.3 amps. The resistance of the heater is R = W/I (squared) =1000/8.3 x 8.3 (69) = 14.5 ohms. Applying 240 volts on the same heater whose resistance is 14.5 ohms results in a new heater wattage rating. W = E (squared)/R = 240 x 240 (57600)/14.5 = 3972 watts. This is 2972 watts, almost 300%, higher than the manufacturer's designed safety rating. The amperage drawn by connecting a 120 volt, 1000 watt heater to a 240 volt source will be, I = W/E = 3972/120 = 33 amps. W = watts, I = amperage, R = resistance in ohms and E = voltage.
No, a 1500 watt heater exceeds the typical 120 volt, 15 amp capacity of a regular apartment outlet. It requires a dedicated circuit with a higher amp capacity to safely operate the heater without overloading the circuit and causing a fire hazard.
Current (amps)=Watts/Volts =2000/120 =16.75 =16.75 amps
Take the plug in your hand, and insert the plug into the wall outlet.
Yes. The voltage of 120 volts is a nominal figure. The utility company has a plus or minus tolerance from 110 to 120 volts. This tolerance is based on the figure of 115 volts.
The maximum power consumption of a 120 watt bulb is 120 watts.