Radio, t.v., cellphones etc.
The property that limits the current flow in an inductor is called inductive reactance. Inductive reactance increases with frequency, causing the inductor to resist changes in current flow. This property is a crucial part of inductor behavior in AC circuits.
To find the resistance needed in series with the 250 ohms inductive reactance to give a total impedance of 400 ohms, we use the Pythagorean theorem for the impedance triangle in series circuits. Given the inductive reactance (X) = 250 ohms, total impedance (Z) = 400 ohms, and resistance (R) = unknown, we have R² + X² = Z². Substituting the values, we get R = √(Z² - X²) = √(400² - 250²) = √(160000 - 62500) = √97500 ≈ 312.5 ohms. Therefore, approximately 312.5 ohms of resistance should be connected in series with the 250 ohms inductive reactance to achieve a total circuit impedance of 400 ohms.
No practical applications. Francium is used only for scientific studies.
Capacitive loads have a leading power factor. Current leads voltage when there is capacitive reactance. (The opposite is inductive, which is lagging.)
Because the impedance of the inductor and capacitor is not a real resistance / has an imaginary value that causes voltage and current to be out of phase. An inductor's impedance is equivalent to j*w*L (j = i = imaginary number, w = frequency in radians, L = inductance), while a capacitor's impedance is 1/ (j*w*C). The 'j' causes the phase shift.
Inductive reactance, as well as capacitive reactance, is measured in ohms.
The symbol for inductive reactance is XL.
Inductive reactance is directly proportional to frequency. This means that as the frequency of an AC circuit increases, the inductive reactance also increases. Conversely, as the frequency decreases, the inductive reactance decreases.
Inductive reactance.
The unit of measurement for inductive reactance (XL) is the ohm.
Inductive reactance does NOT have it own sign or symbol. Rather, it uses Ohms as a quantifier. But Capacitive reactance ALSO uses Ohms as a quantifier. Fortunately, 1 Ohm of Inductive reactance is cancelled by 1 Ohm of Capacitive reactance at the same frequency of measurement.
yyiiiiii
ohms
It isn't necessarily so. The capacitive voltage is the product of the current and capacitive reactance, while the inductive voltage is the product of the current and the inductive reactance. So it depends whether the capacitive reactance is greater or smaller than the inductive reactance!
Inductive reactance, as well as capacitive reactance, is measured in ohms.
Yes. Inductive and capacitive reactance is measured in ohms, and it is entirely possible for reactance to be greater than 1,000, or even 1,000,000, ohms. It all depends on frequency.
Susceptance is the reciprocal of reactance, and is expressed in siemens (symbol: S). So, inductive susceptanceis the reciprocal of inductive reactance, and capacitive susceptance is the reciprocal of capacitive reactance.