You can use that to estimate the size of objects that you are observing.
Field diameter is calculated by measuring the distance across the field of view of a microscope, then dividing that measurement by the magnification of the objective lens being used. This gives you the field diameter in micrometers.
The field of view's diameter is inversely proportional to magnification; thus, the 5.6mm diameter at 40x magnification would become 140mm at 1x magnification. Mathematically, Field of view diameter = FOV1 / Magnification1 = FOV2 / Magnification2.
The higher the magnification the lower the depth of field.
The diameter of the field of view decreases when changing from low to high power magnification. This is because higher magnification zooms in closer on the specimen, limiting the area of the specimen that can be seen at one time.
To calculate the size of the organism, you would need to know the magnification of the microscope being used. Comparing the field diameter at 400x magnification with the actual size of the organism would give you the scale factor to determine the organism's size. For example, if the field diameter at 400x is 0.5 mm, and the actual size is 50 micrometers, then the organism is 10 times smaller than the field diameter.
Magnification is inversely proportional to the diameter of the field of view.
As the magnification of a microscope increases, the diameter of the field of view decreases. This is because higher magnification allows for more detailed observation of objects, but with a narrower field of view. Conversely, lower magnification provides a wider field of view but with less magnification.
Field diameter is calculated by measuring the distance across the field of view of a microscope, then dividing that measurement by the magnification of the objective lens being used. This gives you the field diameter in micrometers.
The field of view's diameter is inversely proportional to magnification; thus, the 5.6mm diameter at 40x magnification would become 140mm at 1x magnification. Mathematically, Field of view diameter = FOV1 / Magnification1 = FOV2 / Magnification2.
The higher the magnification the lower the depth of field.
This process is called calculating the field of view diameter on a microscope. It involves measuring the diameter of the field of view using a ruler and knowing the magnification of the objective lens to determine the actual size of objects viewed under the microscope.
The diameter of the field of view decreases when changing from low to high power magnification. This is because higher magnification zooms in closer on the specimen, limiting the area of the specimen that can be seen at one time.
To calculate the size of the organism, you would need to know the magnification of the microscope being used. Comparing the field diameter at 400x magnification with the actual size of the organism would give you the scale factor to determine the organism's size. For example, if the field diameter at 400x is 0.5 mm, and the actual size is 50 micrometers, then the organism is 10 times smaller than the field diameter.
The equation goes like this and works for both medium AND high feild diameter : Medium(High) DIA. = Low Diameter / [Med(High)mag/low mag] Brackets () are NOT for multiplication, they are for the other formula.
Magnification refers to how much larger an object appears under the microscope compared to the naked eye, while field of view is the diameter of the area visible through the microscope lens at a given magnification. In simple terms, magnification is how big, and field of view is how much you can see.
To find the new field of view at 400X magnification, you would divide the original field of view by the magnification increase factor (which is 10 in this case since you are going from 40X to 400X). So, 6000 um / 10 = 600 um. Therefore, the field of view at 400X magnification would be 600 micrometers.
0.75 mm way to get this answer........... (diameter of field A X total magnification of field A) / total magnification of field B so start by finding the diameter of field A= which is the 1.5 next figure out what the total magnification of field A is= 150 (you get this answer by multiplying the ocular # which is 10x by the objective # which is 15x. (10 x 15= 150) next figure out what the total magnification of field B is =300 (you get this answer by multiplying the ocular # which is 10x by the other higher objective # which is 30x. (10 x 30 = 300) then you can use the formula and plug in all the answers you got to get the answer (1.5mm x 150)/300=.75mm