The complementary mRNA sequence for the DNA sequence CGA would be GCU, as adenine (A) pairs with uracil (U) in RNA instead of thymine (T). The corresponding tRNA sequence that pairs with the mRNA GCU would be CAG, where guanine (G) pairs with cytosine (C) and cytosine (C) pairs with guanine (G). Thus, for the DNA sequence CGA, the mRNA is GCU and the tRNA is CAG.
To determine the base sequence of a DNA strand from a given mRNA sequence, you need to consider that mRNA is synthesized from the DNA template strand through a process called transcription. The mRNA bases pair with their complementary DNA bases, where adenine (A) pairs with thymine (T), uracil (U) in mRNA pairs with adenine (A) in DNA, cytosine (C) pairs with guanine (G), and guanine (G) pairs with cytosine (C). Therefore, to find the DNA base sequence, you can convert the mRNA sequence to its corresponding DNA sequence by replacing U with A and reversing the order to get the complementary DNA strand.
The mRNA base sequence corresponding to the DNA sequence acgtt is ugcaa. The mRNA sequence is complementary to the DNA sequence, with thymine (T) in DNA being replaced by uracil (U) in mRNA.
GCCUAGUA
The complimentary mRNA sequence would be: U-A-A-C-G-U
The mRNA sequence AGUACA corresponds to the codons that will be translated into amino acids during protein synthesis. The matching tRNA sequence, which carries the complementary anticodon, would be UCAUGU. Each tRNA molecule pairs with its corresponding mRNA codon to ensure the correct amino acid is added to the growing polypeptide chain.
The bases of mRNA coded for by a DNA segment are complementary to the original DNA sequence. If the DNA sequences are ATCG, the corresponding mRNA bases will be UAGC.
The complimentary strand of MRNA would be AAUUCCGG.
Anticodons
The complementary base pairing rule for DNA and mRNA is: A pairs with U, T pairs with A, G pairs with C, and C pairs with G. Therefore, the mRNA complementary strand for the DNA sequence TTAAGGCC would be AAUUCCGG.
TGCA
These nucleotide sequences are called anticodons.
To determine the base sequence of a DNA strand from a given mRNA sequence, you need to consider that mRNA is synthesized from the DNA template strand through a process called transcription. The mRNA bases pair with their complementary DNA bases, where adenine (A) pairs with thymine (T), uracil (U) in mRNA pairs with adenine (A) in DNA, cytosine (C) pairs with guanine (G), and guanine (G) pairs with cytosine (C). Therefore, to find the DNA base sequence, you can convert the mRNA sequence to its corresponding DNA sequence by replacing U with A and reversing the order to get the complementary DNA strand.
If the tRNA has the sequence UUA, then the mRNA it reads from will have the sequence complementary to UUA, which is AAU. RNA uses the nucleic acid uracil instead of the DNA counterpart, thymine.
A codon is found in the DNA sequence and in the mRNA sequence. The anticodon is the opposite sequence that would match with the sequence of the codon and allows pairing of the anticodon with the codon
the sequence of bases in DNA
The mRNA base sequence corresponding to the DNA sequence acgtt is ugcaa. The mRNA sequence is complementary to the DNA sequence, with thymine (T) in DNA being replaced by uracil (U) in mRNA.
The complementary sequence for a DNA sequence is formed by replacing each nucleotide with its complementary base. For the given sequence "atgcccgggtgtcgtagttga," its complementary sequence would be "tacgggccacagcatcaact."