Because the shot gene in the pea plant is a recessive trait, there is only one possible genotype for it: tt
A cross between members of the F1 generation (Tt x Tt), results in the genotypic ratio of 1TT:2Tt:1tt genotypes in the F2 generation. Because the tall allele is dominant, the phenotypic ratio would be 3 tall:1 short in the F2 generation.
3.1
Mendel found that every fourth plant had white flowers when he allowed the first generation to self-pollinate. Gregor Mendel was a scientist who lived from 1822 to 1884.hyuyt6yt8
Gregor Mendel did his experiments because he was looking to see how genetics and heredity worked. He used pea plants because they bred true. He found that the taller plants all produced tall plants if they were self pollinated. If short plants were used and were cross pollinated, they would all be short.
In Mendel's experiment, the ratio of tall to short plants in the F2 generation was approximately 3:1. This ratio is explained by Mendel's law of segregation, which states that alleles separate randomly during gamete formation, resulting in different combinations in offspring.
P1: tt F2: tt
A cross between members of the F1 generation (Tt x Tt), results in the genotypic ratio of 1TT:2Tt:1tt genotypes in the F2 generation. Because the tall allele is dominant, the phenotypic ratio would be 3 tall:1 short in the F2 generation.
Gregor Mendel developed the model of heredity that now bears his name by experiments on various charactersitics of pea plants: height (tall vs. Short); seed color (yellow vs. Green); seat coat (smooth vs. wrinkled), etc. The following explanation uses the tall/short trait. The other traits Mendel studied can be substituted for tall and short.Mendel started out with plants that "bred true". That is, when tall plants were self-pollinated (or cross-pollinated with others like them), plants in following generations were all tall; when the short plants were self-pollinated (or cross- pollinated with others like them) the plants in following generations were all short.Mendel found that if true breeding Tall [T] plants are crossed (bred) with true breeding short [t] plants, all the next generation of plants, called F1, are all tall.Next, he showed that self-pollinated F1 plants (or cross- pollinated with other F1 plants) produce an F2 generation with 3/4 of the plants tall and 1/4 short.A. 1/4 of the F2 generation are short plants, which produce only short plants in the F3 generation, if they are self- pollinated (or crossed with other short F2 plants;) these F2 plants breed true.B, 1/4 of the F2 generation (1/3 of the tall plants) are tall plants that produce only tall plants in the F3 generation, if they are self-pollinated; these tall F2 plants breed true.C. 1/2 of the F2 generation (2/3 of the tall plants) are tall plants that produce 1/4 short plants and 3/4 tall plants in the next [F3] generation, if they are self-pollinated. This is the same proportion of tall to short that F1 plants produce.
There were three times as many tall plants as short plants.
A cross between members of the F1 generation (Tt x Tt), results in the genotypic ratio of 1TT:2Tt:1tt genotypes in the F2 generation. Because the tall allele is dominant, the phenotypic ratio would be 3 tall:1 short in the F2 generation.
3.1
three times as many tall plants as short plants
Mendel found that every fourth plant had white flowers when he allowed the first generation to self-pollinate. Gregor Mendel was a scientist who lived from 1822 to 1884.hyuyt6yt8
3.1
3.1
3.1
3.1