The plasmid that contains foreign DNA is engineered to also carry an antibiotic resistance gene. This antibiotic resistance gene codes for a protein that is able to inactivate an antibiotic thus keeping the cell alive. In the absence of the antibiotic resistance gene, the cells would not survive when exposed to an antibiotic. After transfection (the process of inserting the plasmid carrying the foreign gene into cells), the cells are gown in media containing an antibiotic. Cells that contain the plasmid (and therefore contain the antibiotic resistance gene) are able to survive in this medium. Cells that do not contain the plasmid (and therefore lack the antibiotic resistance gene) do not survive in this medium. The process described above is called selection
http://wiki.answers.com/Q/Do_plants_have_plasmids"
1. Scientists remove plasmids, small rings of DNA, from bacterial cells. 2. An enzyme cuts open the plasmid DNA. The same enzyme removes the human insulin gene from its chromosome. 3. The human insulin gene attaches the open ends of the plasmid to form a closed ring. 4. Some bacterial cells take up the plasmids that have the insulin gene. 5. When cells reproduce, the news cells will contain copies of the engineered plasmid. The foreign gene directs the cell to produce human insulin.
A population of cells carrying a desired plasmid is called a transformed population.
The transformants are selected for on agar containing an appropriate antibiotic. For example if your recombinant plasmid contains a kanamycin cassette, then only the cells containing the plasmid will grow on an agar plate containing kanamycin. PCR can then be performed on the colonies to ensure they contain your gene of interest on the plasmid.
The plasmid is found in prokaryotic cells.
The plasmid that contains foreign DNA is engineered to also carry an antibiotic resistance gene. This antibiotic resistance gene codes for a protein that is able to inactivate an antibiotic thus keeping the cell alive. In the absence of the antibiotic resistance gene, the cells would not survive when exposed to an antibiotic. After transfection (the process of inserting the plasmid carrying the foreign gene into cells), the cells are gown in media containing an antibiotic. Cells that contain the plasmid (and therefore contain the antibiotic resistance gene) are able to survive in this medium. Cells that do not contain the plasmid (and therefore lack the antibiotic resistance gene) do not survive in this medium. The process described above is called selection
http://wiki.answers.com/Q/Do_plants_have_plasmids"
1. Scientists remove plasmids, small rings of DNA, from bacterial cells. 2. An enzyme cuts open the plasmid DNA. The same enzyme removes the human insulin gene from its chromosome. 3. The human insulin gene attaches the open ends of the plasmid to form a closed ring. 4. Some bacterial cells take up the plasmids that have the insulin gene. 5. When cells reproduce, the news cells will contain copies of the engineered plasmid. The foreign gene directs the cell to produce human insulin.
You can determine if your bacteria contain a plasmid by performing a plasmid extraction followed by gel electrophoresis to visualize the presence of plasmid DNA. Other methods include PCR amplification of plasmid-specific sequences or using molecular biology techniques like restriction enzyme digestion to confirm the presence of a plasmid.
A plasmid is a small molecule of DNA that replicate independently within the cell. A population of cells carrying a desired plasmid is called a clone.
A population of cells carrying a desired plasmid is called a transformed population.
The transformants are selected for on agar containing an appropriate antibiotic. For example if your recombinant plasmid contains a kanamycin cassette, then only the cells containing the plasmid will grow on an agar plate containing kanamycin. PCR can then be performed on the colonies to ensure they contain your gene of interest on the plasmid.
plasmid
True
Incorporation and expression of a plasmid in eukaryotic cells is typically achieved through a process called transfection. This involves introducing the plasmid DNA into the cells using methods such as electroporation or lipid-mediated transfection. Once inside the cell, the plasmid can be expressed by the cell's machinery to produce the desired protein or gene product.
The enzyme produced by cells transformed with plasmid lux that is not produced by cells transformed with pUC18 is luciferase. This enzyme is responsible for the bioluminescent properties of animals like fireflies and glowworms. Cells transformed with plasmid lux will emit light in the presence of the substrate luciferin, whereas cells transformed with pUC18 will not.