How a neurotransmitter interacts with the receptors determines its effects. They activate receptors to perform specific functions in the body.
the type of receptor
Every time neurotransmitter is released from the presynaptic neuron it generates an excitatory post synaptic potential(EPSP) in the postsynaptic neuron. When the EPSP is greater than the threshold for excitation an action potential is generated.
Psychoactive drugs can affect the brain by altering neurotransmitter levels, specifically dopamine, serotonin, and norepinephrine. They can also impact neural pathways and structures, leading to changes in mood, perception, cognition, and behavior. Chronic use of these drugs can disrupt normal brain functioning and lead to addiction or other long-term consequences.
A neuron decides whether or not to produce an action potential by a summation of excitatory and inhibitory signals at the trigger point of the neuron, the axon hillock (or, the initial segment of the axon immediately following the axon hillock), plus a sufficient density of voltage-gated sodium ion pores at the trigger point.Neurons can receive both excitatory and inhibitory inputs at the same time, and if a confluence of those multiple signals at the axon hillock/initial axon segment (or alternatively, an occasion of sufficiently quickly repeated excitatory signals) sums to yield a membrane potential there of about -55 mv, this will cause the large number of voltage-gated sodium ion pores present there to open, allowing a sufficient influx of sodium ions to raise the membrane potential momentarily higher, which depolarizes adjacent regions of the axon, allowing more voltage-gated ion pores to open, allowing more sodium ions in; these actions repeat and continue along the axon, achieving the action potential.It's important to understand that although the level of the summation of signal voltages is the trigger for the action potential, the initial firing of the action potential could not occur if there wasn't a sufficient density of voltage-gated sodium ion pores at the trigger point to allow sufficient sodium ions in to cause the membrane potential in adjacent regions to be high enough to open theirv-gated Na ion pores, so that the action potential could continue to propagate along the axon.
Whether or not it's an acid or a base
In general, carbon compounds.
The type of neurotransmitter.
The determination of whether a synapse is excitatory or inhibitory is based on the type of neurotransmitter released at the synapse. Excitatory synapses release neurotransmitters that promote the firing of the receiving neuron, while inhibitory synapses release neurotransmitters that prevent the firing of the receiving neuron.
Every time neurotransmitter is released from the presynaptic neuron it generates an excitatory post synaptic potential(EPSP) in the postsynaptic neuron. When the EPSP is greater than the threshold for excitation an action potential is generated.
The effect upon the target neuron is determined not by the source neuron or by the neurotransmitter, but by the type of receptor that is activated. A neurotransmitter can be thought of as a key, and a receptor as a lock: the same type of key can here be used to open many different types of locks. Receptors can be classified broadly as excitatory(causing an increase in firing rate),inhibitory(causing a decrease in firing rate), or modulatory(causing long-lasting effects not directly related to firing rate).
The terms antagonist/agonist only apply to 'exogenous' compounds, namely drugs and toxins, and not neurotransmitters - which are commonly classed according to whether they are excitatory or inhibitory. Examples of a the latter include GABA and glycine.
As a rule more than one presynaptic action potential is needed to fire the postsynaptic neuron or muscle so that the trigger to initiate an action potential are either many subthreshold local potentials from different sources or from the same neuron received within a short period of time. The first case is called spatial summation and the second case is called temporal summation. Whether a postsynaptic potential (another term for a local potential) is excitatory or inhibitory depends on what ion channels are affected by the transmitter released from the presynaptic vesicles.
Whether your foot is on it or not.
Psychoactive drugs can affect the brain by altering neurotransmitter levels, specifically dopamine, serotonin, and norepinephrine. They can also impact neural pathways and structures, leading to changes in mood, perception, cognition, and behavior. Chronic use of these drugs can disrupt normal brain functioning and lead to addiction or other long-term consequences.
A neuron decides whether or not to produce an action potential by a summation of excitatory and inhibitory signals at the trigger point of the neuron, the axon hillock (or, the initial segment of the axon immediately following the axon hillock), plus a sufficient density of voltage-gated sodium ion pores at the trigger point.Neurons can receive both excitatory and inhibitory inputs at the same time, and if a confluence of those multiple signals at the axon hillock/initial axon segment (or alternatively, an occasion of sufficiently quickly repeated excitatory signals) sums to yield a membrane potential there of about -55 mv, this will cause the large number of voltage-gated sodium ion pores present there to open, allowing a sufficient influx of sodium ions to raise the membrane potential momentarily higher, which depolarizes adjacent regions of the axon, allowing more voltage-gated ion pores to open, allowing more sodium ions in; these actions repeat and continue along the axon, achieving the action potential.It's important to understand that although the level of the summation of signal voltages is the trigger for the action potential, the initial firing of the action potential could not occur if there wasn't a sufficient density of voltage-gated sodium ion pores at the trigger point to allow sufficient sodium ions in to cause the membrane potential in adjacent regions to be high enough to open theirv-gated Na ion pores, so that the action potential could continue to propagate along the axon.
Your physician would be the best person to determine whether you have a disability.
Context.
density!