The energy levels and orbitals the electrons are in
"Magnetic quantum number" is a quantum number that corresponds to individual electrons, not to an entire atom.
In theory, the number of electrons with each quantum number is not limited. However, for any given "main quantum number" (n), the number of electrons having the other quantum numbers is limited - but it depends on the value of "n". For more information, the Wikipedia article on "quantum number" seems to give a good overview.
The maximum number of electrons with principal quantum number 4 and angular momentum quantum number 0 would be 2 electrons. This is because for each energy level (n), there can only be one orbital (l=0) present, and each orbital can hold a maximum of 2 electrons (with opposite spins, as per the Pauli exclusion principle).
In lanthanum (La), which has an atomic number of 57, the quantum numbers describe the arrangement of its electrons in atomic orbitals. The electron configuration for lanthanum is [Xe] 6s², indicating that it has two electrons in the 6s orbital. The principal quantum number (n) for these electrons is 6, while the azimuthal quantum number (l) is 0, corresponding to an s orbital. The magnetic quantum number (m_l) for the 6s orbital is also 0, and the spin quantum number (m_s) can be +1/2 or -1/2 for each of the two electrons.
An orbital can only occupy maximum of 2 electrons. As p orbital consist of 3 orbitals. And has 3 orientations. Px, Py, Pz. So as there are 3 orbitals so p orbital can occupy at the maximum 6 electrons regardless of principle quantum no.. In 4p 4 is principle quantum no. So it represent 4p represent the p orbital of 4th shell. So it also occupy at the maximum of 6 electrons.
The energy levels and orbitals the electrons are in
represents the spin of the electron.
"Magnetic quantum number" is a quantum number that corresponds to individual electrons, not to an entire atom.
In theory, the number of electrons with each quantum number is not limited. However, for any given "main quantum number" (n), the number of electrons having the other quantum numbers is limited - but it depends on the value of "n". For more information, the Wikipedia article on "quantum number" seems to give a good overview.
n is the principal quantum number and represents the energy level or electron shell in which an electron resides. For example - Say you have an Oxygen atom, which has 8 electrons. It's electron configuration is 1s2 2s2 2p4. The 2 in 2p4 is the principle quantum number, n. The s is another term dealing with angular momentum and the 4 is the number of electrons.
quantum number
The maximum number of electrons with principal quantum number 4 and angular momentum quantum number 0 would be 2 electrons. This is because for each energy level (n), there can only be one orbital (l=0) present, and each orbital can hold a maximum of 2 electrons (with opposite spins, as per the Pauli exclusion principle).
In lanthanum (La), which has an atomic number of 57, the quantum numbers describe the arrangement of its electrons in atomic orbitals. The electron configuration for lanthanum is [Xe] 6s², indicating that it has two electrons in the 6s orbital. The principal quantum number (n) for these electrons is 6, while the azimuthal quantum number (l) is 0, corresponding to an s orbital. The magnetic quantum number (m_l) for the 6s orbital is also 0, and the spin quantum number (m_s) can be +1/2 or -1/2 for each of the two electrons.
An orbital can only occupy maximum of 2 electrons. As p orbital consist of 3 orbitals. And has 3 orientations. Px, Py, Pz. So as there are 3 orbitals so p orbital can occupy at the maximum 6 electrons regardless of principle quantum no.. In 4p 4 is principle quantum no. So it represent 4p represent the p orbital of 4th shell. So it also occupy at the maximum of 6 electrons.
The outermost electrons in a nitrogen atom have an azimuthal quantum number of 1, which corresponds to the p orbital.
The maximum number of electrons in a period with a principle quantum number of 4 is 32. Each period corresponds to a principal quantum number, and the number of electrons in a period can be calculated using the formula 2n^2, where n is the principal quantum number. In this case, for n=4, 2(4)^2 = 32.
The principal quantum number of electrons has the symbol n.This number is always an integer.