If by this you mean, what two things influence the structure of your DNA and the pattern in it's 'strands' then: Your DNA is influenced by your genes, where nearly half are your mothers, and nearly half are your fathers.
However DNA can also be altered or 're-written' by mutation, and the DNA itself becomes corrupt in that cell, which can lead to general mutations, cancer and tumors.
A good Google search on more information would be: The Human Genome Project
This is where they literally analysed a person's DNA and stored in on database, so therefore with this they could make a perfect copy of him, more like the original man than a standard clone (which can be affected by greater mutation.)
Complementary base pairing in DNA-DNA pairing involves adenine (A) pairing with thymine (T) and cytosine (C) with guanine (G), following the rules of Watson-Crick base pairing. In DNA-mRNA pairing, uracil (U) replaces thymine, so adenine (A) pairs with uracil (U) in mRNA instead of thymine (T).
A DNA molecule can have base pairs composed of adenine (A) pairing with thymine (T), and guanine (G) pairing with cytosine (C). This is known as complementary base pairing in DNA.
In DNA,adenine----------thyminecytosine----------guanine
In the synthesis of mRNA, an adenine in the DNA pairs with uracil. This is known as A-U base pairing, which replaces the A-T base pairing found in DNA replication.
base pairing, where adenine pairs with thymine and guanine pairs with cytosine. This complementary base pairing ensures that each new strand of DNA is an exact copy of the original strand during replication.
Complementary base pairing in DNA-DNA pairing involves adenine (A) pairing with thymine (T) and cytosine (C) with guanine (G), following the rules of Watson-Crick base pairing. In DNA-mRNA pairing, uracil (U) replaces thymine, so adenine (A) pairs with uracil (U) in mRNA instead of thymine (T).
Complementary base pairing is the term used to describe the pattern of hydrogen bonding between adenine and thymine, and between guanine and cytosine in DNA. This pairing ensures the fidelity of DNA replication and transcription processes.
Adenine pairs with thymine, and guanine pairs with cytosine. This complementary base pairing forms the double helix structure of DNA, where hydrogen bonds hold the pairs together. This pattern allows for DNA replication and transmission of genetic information.
The correct base-pairing rules in DNA are adenine (A) pairing with thymine (T) and guanine (G) pairing with cytosine (C). This forms complementary base pairs that contribute to the double-helix structure of DNA.
A DNA molecule can have base pairs composed of adenine (A) pairing with thymine (T), and guanine (G) pairing with cytosine (C). This is known as complementary base pairing in DNA.
DNA base pairing refers to the specific hydrogen bonding between adenine and thymine, as well as cytosine and guanine. This complementary base pairing allows for DNA replication and helps maintain the double-stranded structure of DNA. The base pairing ensures the accurate transmission of genetic information during cell division.
In DNA,adenine----------thyminecytosine----------guanine
Because of base pairing in DNA, the percentages of adenine are equal to thymine, and the percentages of cytosine are equal to guanine. This is known as Chargaff's rules, where A=T and C=G in DNA strands. This complementary base pairing is essential for DNA replication and stability.
Adenine pairs with thymine Guanine pairs with cytosine.
The correct base-pairing rules for DNA are adenine (A) pairing with thymine (T), and cytosine (C) pairing with guanine (G). This complementary base pairing allows DNA replication to occur accurately, ensuring genetic information is faithfully transmitted during cell division.
Although the base pairing between two strands of DNA in a DNA molecule can be thousands to millions of base pairs long, base pairing in an RNA molecule is limited to short stretches of nucleotides in the same molecule or between two RNA molecules.
i am not sure