the atom is obvorbed with a structre of strikes which can power a energy photon by 31 x10 but can obloute to -19. the sequal atom is a number of strikes added to a molecue.
answer: high mark.
well thats a theory i believe that will work with space travel or FTL travel,the photon wil make the electrons go crazy,so crazy that the nucleus either dissolves or becomes negatively charged and just flies away with the electrons orbiting the photon,and make matter travel the speed of light,i like to call this particle a "photom"
When a photon is absorbed by an atom, it can excite an electron to a higher energy level or even ionize the atom by completely removing an electron. This absorption of energy can cause the atom to undergo various processes such as fluorescence, photoelectric effect, or photoionization, depending on the energy of the photon and the characteristics of the atom.
When an electron drops from a higher energy state to a lower energy state, it emits electromagnetic radiation in the form of a photon. This process is known as atomic emission, and the energy of the emitted photon corresponds to the energy difference between the two electron states.
A photon strikes electrons in special molecules in the cells A.S.Apex go apex >A<
A packet of light energy is called a photon.
Photons are absorbed by materials when their energy matches the energy levels of electrons in the material. When a photon is absorbed, it can cause an electron to move to a higher energy level or be released as heat. The absorbed energy can also be re-emitted as a new photon or used to create a chemical reaction.
When a photon strikes a solar cell it bounces off. In Physics, a photon is an elementary particle, the quantum of the electromagnetic interaction and the basic unit of light and all other forms of electromagnetic radiation.
When a photon strikes an object, it can be absorbed, reflected, or transmitted through the material. The interaction of the photon with the object depends on factors such as the material's composition, surface properties, and the energy of the photon.
An electron in the atom gains about 5 x 10-19 J of energy
When an electron absorbs a photon, its energy increases because the photon transfers its energy to the electron. The photon ceases to exist as a discrete particle and its energy is absorbed by the electron, causing it to move to a higher energy level.
When a photon hits a leaf, it may be absorbed by chlorophyll molecules, which are specialized pigments that can capture the energy of the photon and initiate photosynthesis. This absorbed energy is then used to drive chemical reactions that convert carbon dioxide and water into glucose and oxygen.
well thats a theory i believe that will work with space travel or FTL travel,the photon wil make the electrons go crazy,so crazy that the nucleus either dissolves or becomes negatively charged and just flies away with the electrons orbiting the photon,and make matter travel the speed of light,i like to call this particle a "photom"
When matter absorbs a photon, the energy of the matter increases by an amount equal to the energy of the absorbed photon. The frequency and wavelength of the absorbed radiation depend on the energy of the photon and are inversely related - higher energy photons have higher frequencies and shorter wavelengths.
Light is absorbed by matter when its energy matches the energy levels of electrons in the atoms or molecules of the material. When a photon of light hits an atom, it can excite an electron to a higher energy level, causing the photon to be absorbed. The absorbed energy is then typically converted into heat or re-emitted as another photon with a longer wavelength.
When the electrons in molecules are unable to absorb the energy of incident photon, the photon continues along its path. This happens in the case of glass, even though glass is not 100 percent transparent, as some of the photon energy is absorbed by the glass electrons.
A photon can be created when an electron transitions to a lower energy level and emits a photon. Conversely, a photon can be absorbed and "destroyed" when it is absorbed by an electron, causing the electron to transition to a higher energy level.
When a photon is absorbed by a material or object, its energy is transferred to the material, causing its atoms or molecules to become excited. This can lead to various effects such as heating, the emission of light, or triggering chemical reactions.