It will repel
When a positively-charged alpha particle directly hits a positively-charged nucleus, it experiences a strong electrostatic repulsion due to the like charges. This repulsion can cause the alpha particle to be deflected away from the nucleus, preventing it from penetrating further. If the energy of the alpha particle is high enough, it may overcome the repulsive force, resulting in nuclear reactions or the emission of radiation, but typically, it is repelled.
When a positively charged alpha particle collides with a positively charged nucleus, they experience a strong repulsive force due to their like charges. This repulsion can prevent the alpha particle from penetrating the nucleus. If the energy of the alpha particle is sufficiently high, it may overcome the Coulomb barrier and interact with the nucleus, potentially leading to nuclear reactions such as fusion or scattering. However, under normal circumstances, the alpha particle will simply be deflected away from the nucleus.
An alpha particle is a helium nucleus, and as such it has 2 protons and 2 neutrons and no electrons. Thus, it is positively charged. This makes it very unlikely that it will hit the nucleus which is also positively charged and will repel the alpha particle. The only way to get the alpha particle to hit the nucleus is to accelerate it to very high speeds.
alpha particles
It will repel
It will repel
When a positively-charged alpha particle directly hits a positively-charged nucleus, it experiences a strong electrostatic repulsion due to the like charges. This repulsion can cause the alpha particle to be deflected away from the nucleus, preventing it from penetrating further. If the energy of the alpha particle is high enough, it may overcome the repulsive force, resulting in nuclear reactions or the emission of radiation, but typically, it is repelled.
This particle is rejected.
It will repel
When a positively charged alpha particle collides with a positively charged nucleus, they experience a strong repulsive force due to their like charges. This repulsion can prevent the alpha particle from penetrating the nucleus. If the energy of the alpha particle is sufficiently high, it may overcome the Coulomb barrier and interact with the nucleus, potentially leading to nuclear reactions such as fusion or scattering. However, under normal circumstances, the alpha particle will simply be deflected away from the nucleus.
This particle will be rejected.
It will repel
An alpha particle is a helium nucleus, and as such it has 2 protons and 2 neutrons and no electrons. Thus, it is positively charged. This makes it very unlikely that it will hit the nucleus which is also positively charged and will repel the alpha particle. The only way to get the alpha particle to hit the nucleus is to accelerate it to very high speeds.
An alpha particle has a charge of 2, which means it is positively charged.
alpha particles
Alpha rays are He nucleii.They are positively charged.