Avogadro's law states that equal volumes of gases, at the same temperature and pressure, contain an equal number of molecules. At standard temperature and pressure (STP), which is defined as 0 degrees Celsius and 1 atmosphere of pressure, one mole of an ideal gas occupies approximately 22.4 liters. Therefore, 1 mile (approximately 1,609.34 meters) of gas at STP would contain a significantly larger number of moles than the volume of gas typically considered in Avogadro's law, which is usually expressed in liters. To find the exact number of moles in 1 mile of gas at STP, one would need to convert the volume from miles to liters and then apply Avogadro’s principle.
1 mol of any gas has a volume of 22.4 L at STP
First find out how many moles of gas are collected under the given conditions using the Ideal Gas Law.See the Related Questions link to the left for how to do that. Then use that number of moles and determine the volume of that much gas at STP, also using the Ideal Gas Law question to the left.
Using the ideal gas law, at STP (standard temperature and pressure), 1 mole of gas occupies 22.4 liters. Therefore, a balloon with 560 liters at STP would contain 25 moles of gas (560 liters / 22.4 liters/mole).
It occupies 22.4 L
To find the volume occupied by 20.4 liters of CO2 at STP (Standard Temperature and Pressure, defined as 0°C and 1 atm), we can use the ideal gas law and the concept of proportionality. At STP, 1 mole of gas occupies 22.4 liters, and 1200 torr is approximately 1.58 atm. Using the combined gas law, we can calculate the volume at STP: [ V_{STP} = V_{initial} \times \frac{P_{initial}}{P_{STP}} \times \frac{T_{STP}}{T_{initial}} ] Substituting the known values, the volume at STP will be approximately 12.9 liters.
1 mole of gas at STP occupies 22.4 liters.
It occupies 22.4 L
1 mole of gas at STP occupies 22.4 liters.
1 mol of any gas has a volume of 22.4 L at STP
1 mole of gas at STP occupies 22.4 liters.
1 mole of gas at STP occupies 22.4 liters.
It occupies 22.4 L
To calculate the volume of CO2 at STP (Standard Temperature and Pressure), you can use the ideal gas law equation: PV = nRT. First, find the number of moles of CO2 using the ideal gas law equation. Then, use the molar volume of a gas at STP (22.4 L/mol) to find the volume at STP.
First find out how many moles of gas are collected under the given conditions using the Ideal Gas Law.See the Related Questions link to the left for how to do that. Then use that number of moles and determine the volume of that much gas at STP, also using the Ideal Gas Law question to the left.
Using the ideal gas law, at STP (standard temperature and pressure), 1 mole of gas occupies 22.4 liters. Therefore, a balloon with 560 liters at STP would contain 25 moles of gas (560 liters / 22.4 liters/mole).
It occupies 22.4 L
It occupies 22.4 L