heredity
The genotype of the father is certainly OO (because blood type O is recessive). The genotype of the mother however can be AO or AA (both give blood type A). The baby will have a combination of the genes from the mother and the father (one of each) and so: - If the genotype of the mother is AA and the genotype of the father is OO, the baby will certainly have AO as genotype and has therefore blood type A. -If the genotype of the mother is AO and the genotype of the father is OO, the baby can have AO or OO as genotype. AO results in blood type A and OO in blood type O (50% chance).
A genotype is decided from two alleles. One of these alleles comes from the father, and one comes from the mother. Thus it should be clear that the genotype can be different from both parents. For instance, suppose the father has genotype AA, and the mother has genotype aa. In this case, the child will have genotype Aa, which neither parent has.
Yes, if the father's genotype is AO, and both of them have +- genotype. However, this would be very rare.
To determine SpongeGerdys' genotype, we need to know the genotypes of her parents. If her mother is a roundpants, we can assume her genotype is homozygous recessive (rr). Her father, being a heterozygous squarepants, has the genotype (Ss). Assuming roundpants (r) is recessive to squarepants (S), SpongeGerdys could inherit a combination of alleles from her parents that could be either (Sr) or (sr), resulting in either a squarepants or roundpants phenotype. Therefore, SpongeGerdys' genotype could be either Sr or sr.
The genotype is either BB or BO. The antigens on the blood cell are B and the antibodies in the blood plasma are A.
The genotype of the father is certainly OO (because blood type O is recessive). The genotype of the mother however can be AO or AA (both give blood type A). The baby will have a combination of the genes from the mother and the father (one of each) and so: - If the genotype of the mother is AA and the genotype of the father is OO, the baby will certainly have AO as genotype and has therefore blood type A. -If the genotype of the mother is AO and the genotype of the father is OO, the baby can have AO or OO as genotype. AO results in blood type A and OO in blood type O (50% chance).
The mother is genotype AB, the father is either genotype BO or BB. If the father is genotype BO, the children can be genotype AB, AO, BB, or BO. This results in children with phenotype blood types of: AB, A, or B. If the father is genotype BB, the children can be genotype AB, AB, BB, or BB. This results in children with phenotype blood types of: AB or B.
The mother is genotype AB, the father is either genotype BO or BB. If the father is genotype BO, the children can be genotype AB, AO, BB, or BO. This results in children with phenotype blood types of: AB, A, or B. If the father is genotype BB, the children can be genotype AB, AB, BB, or BB. This results in children with phenotype blood types of: AB or B.
The mother is genotype AB, the father is either genotype BO or BB. If the father is genotype BO, the children can be genotype AB, AO, BB, or BO. This results in children with phenotype blood types of: AB, A, or B. If the father is genotype BB, the children can be genotype AB, AB, BB, or BB. This results in children with phenotype blood types of: AB or B.
50% AA and 50% Aa
The genotype of the father is certainly OO (because blood type O is recessive). The genotype of the mother however can be AO or AA (both give blood type A). The baby will have a combination of the genes from the mother and the father (one of each) and so: - If the genotype of the mother is AA and the genotype of the father is OO, the baby will certainly have AO as genotype and has therefore blood type A. -If the genotype of the mother is AO and the genotype of the father is OO, the baby can have AO or OO as genotype. AO results in blood type A and OO in blood type O (50% chance).
The mother will produce two types of gametes: IA and IO (mother is A) The father is AB his genotype is IAIB, thus he will produce these kind of gametes: IA and IB Four combinations are possible IA from Mother and IA from Father: The child has genotype IAIA and he has blood group A IO from Mother and IA from Father: The child has genotype IAIO and he has blood group A IA from Mother and IB from Father: The child has genotype IAIB and he has blood group AB IO from Mother and IB from Father: The child has genotype IBIO and he has blood group B Thus the phnotypic ratio is blood group A:B:AB = 2:1:1
It is not possible. NO
A genotype is decided from two alleles. One of these alleles comes from the father, and one comes from the mother. Thus it should be clear that the genotype can be different from both parents. For instance, suppose the father has genotype AA, and the mother has genotype aa. In this case, the child will have genotype Aa, which neither parent has.
depends... were they homozygous or heterozygous?
BBkk as there is no other alleles present for the man to inherit. the father can only pass on a B allele and a k allele and the mother can also only pass on a B allele and a k allele.
The mother would have to be type A. Father has genotype (0,0) Mother would need to have genotype (A,0) - fenotype (blood group) = A