H2B4O7 is the chemical formula for pyroboric acid, also called also tetraboric acid (IUPAC name - 4-octylbenzoic acid).
It is the acid ingredient of ordinary borax, and is obtained by heating boric acid.
The acid dissociation constant (Ka) for the reaction of boric acid (H3BO3) in water can be expressed as: [ H3BO3(aq) \rightleftharpoons H^+(aq) + H2BO3^-(aq) ] The Ka value represents the equilibrium constant for this reaction, indicating the extent to which boric acid donates protons to form hydronium ions (H+) and the borate ion (H2BO3^-). For boric acid, this Ka is relatively small, reflecting its weak acidic nature compared to stronger acids.
The dissociation of boric acid (H₃BO₃) in aqueous solution involves the formation of the borate ion (H₂BO₃⁻) and a proton (H⁺). The acid dissociation constant (Ka) for this reaction is typically around 5.8 x 10⁻¹⁰ at 25°C. This indicates that boric acid is a weak acid, as it does not completely dissociate in water.
not sure
Ka= [H+] [H2BO3-] / [h3BO3] (Apex)
The acid dissociation constant (Ka) for the reaction of boric acid (H3BO3) in water can be expressed as: [ H3BO3(aq) \rightleftharpoons H^+(aq) + H2BO3^-(aq) ] The Ka value represents the equilibrium constant for this reaction, indicating the extent to which boric acid donates protons to form hydronium ions (H+) and the borate ion (H2BO3^-). For boric acid, this Ka is relatively small, reflecting its weak acidic nature compared to stronger acids.
Cuso4, FeSO4, ZnSO4, and MnSO4 are inorganic salts, commonly used as sources of copper, iron, zinc, and manganese ions respectively. H2BO3 is boric acid, used in various industrial applications. H2O is water, a universal solvent essential for life.
The equilibrium constant expression for the reaction you provided would be ( K_a = \frac{[H^+][H_2BO_3^-]}{[H_3BO_3]} ). However, the specific value of ( K_a ) for this reaction would depend on the concentrations of the species involved in the particular experimental conditions.
The dissociation of boric acid (H₃BO₃) in aqueous solution involves the formation of the borate ion (H₂BO₃⁻) and a proton (H⁺). The acid dissociation constant (Ka) for this reaction is typically around 5.8 x 10⁻¹⁰ at 25°C. This indicates that boric acid is a weak acid, as it does not completely dissociate in water.
No, boric acid is NOT tribasic, although its formula suggests so with formula H3BO3.It is a mono-basic, weak acid:H3BO3 + H2O
H3PO4 (aq) + H2O (l) ---> 2H3O+ (aq) + PO4-3 (aq)donor acid + acceptor base ---> conjugate acid + conjugate basethe answer above is wrongto form a conjugate, the ion H2PO4 - must lose a hydrogen ion H+i.eH2PO4 - -H+ = HPO4 2-(conjugate base)